Splitting K-symplectic methods for non-canonical separable Hamiltonian problems
文献类型:期刊论文
作者 | Zhu, Beibei1; Zhang, Ruili2; Tang, Yifa1![]() |
刊名 | JOURNAL OF COMPUTATIONAL PHYSICS
![]() |
出版日期 | 2016-10-01 |
卷号 | 322页码:387-399 |
关键词 | K-symplectic methods Splitting algorithms Gauss' methods Generating function methods |
ISSN号 | 0021-9991 |
DOI | 10.1016/j.jcp.2016.06.044 |
英文摘要 | Non-canonical Hamiltonian systems have K-symplectic structures which are preserved by K-symplectic numerical integrators. There is no universal method to construct K-symplectic integrators for arbitrary non-canonical Hamiltonian systems. However, in many cases of interest, by using splitting, we can construct explicit K-symplectic methods for separable non-canonical systems. In this paper, we identify situations where splitting K-symplectic methods can be constructed. Comparative numerical experiments in three non-canonical Hamiltonian problems show that symmetric/non-symmetric splitting K-symplectic methods applied to the non-canonical systems are more efficient than the same-order Gauss' methods/non-symmetric symplectic methods applied to the corresponding canonicalized systems; for the non-canonical Lotka-Volterra model, the splitting algorithms behave better in efficiency and energy conservation than the K-symplectic method we construct via generating function technique. In our numerical experiments, the favorable energy conservation property of the splitting K-symplectic methods is apparent. (C) 2016 Elsevier Inc. All rights reserved. |
资助项目 | National Natural Science Foundation of China[11371357] ; ITER-China Program[2014GB124005] |
WOS研究方向 | Computer Science ; Physics |
语种 | 英语 |
WOS记录号 | WOS:000381585100020 |
出版者 | ACADEMIC PRESS INC ELSEVIER SCIENCE |
源URL | [http://ir.amss.ac.cn/handle/2S8OKBNM/23352] ![]() |
专题 | 计算数学与科学工程计算研究所 |
通讯作者 | Tang, Yifa |
作者单位 | 1.Chinese Acad Sci, Acad Math & Syst Sci, ICMSEC, LSEC, Beijing 100190, Peoples R China 2.Univ Sci & Technol China, Ctr Adv Fus Energy & Plasma Sci, Dept Modern Phys & Collaborat Innovat, Hefei 230026, Anhui, Peoples R China |
推荐引用方式 GB/T 7714 | Zhu, Beibei,Zhang, Ruili,Tang, Yifa,et al. Splitting K-symplectic methods for non-canonical separable Hamiltonian problems[J]. JOURNAL OF COMPUTATIONAL PHYSICS,2016,322:387-399. |
APA | Zhu, Beibei,Zhang, Ruili,Tang, Yifa,Tu, Xiongbiao,&Zhao, Yue.(2016).Splitting K-symplectic methods for non-canonical separable Hamiltonian problems.JOURNAL OF COMPUTATIONAL PHYSICS,322,387-399. |
MLA | Zhu, Beibei,et al."Splitting K-symplectic methods for non-canonical separable Hamiltonian problems".JOURNAL OF COMPUTATIONAL PHYSICS 322(2016):387-399. |
入库方式: OAI收割
来源:数学与系统科学研究院
浏览0
下载0
收藏0
其他版本
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。