A dynamic-solver-consistent minimum action method: With an application to 2D Navier-Stokes equations
文献类型:期刊论文
作者 | Wan, Xiaoliang1,2; Yu, Haijun3,4 |
刊名 | JOURNAL OF COMPUTATIONAL PHYSICS
![]() |
出版日期 | 2017-02-15 |
卷号 | 331页码:209-226 |
关键词 | Minimum action method Rare events White noise Colored noise Finite element method Numerical adaptivity |
ISSN号 | 0021-9991 |
DOI | 10.1016/j.jcp.2016.11.019 |
英文摘要 | This paper discusses the necessity and strategy to unify the development of a dynamic solver and a minimum action method (MAM) for a spatially extended system when employing the large deviation principle (LDP) to study the effects of small random perturbations. A dynamic solver is used to approximate the unperturbed system, and a minimum action method is used to approximate the LDP, which corresponds to solving an Euler-Lagrange equation related to but more complicated than the unperturbed system. We will clarify possible inconsistencies induced by independent numerical approximations of the unperturbed system and the LDP, based on which we propose to define both the dynamic solver and the MAM on the same approximation space for spatial discretization. The semi-discrete LDP can then be regarded as the exact LDP of the semi-discrete unperturbed system, which is a finite-dimensional ODE system. We achieve this methodology for the two-dimensional Navier-Stokes equations using a divergence free approximation space. The method developed can be used to study the nonlinear instability of wall-bounded parallel shear flows, and be generalized straightforwardly to three-dimensional cases. Numerical experiments are presented. (C) 2016 Elsevier Inc. All rights reserved. |
资助项目 | AFOSR Grant[FA9550-15-1-0051] ; NSF Grant[DMS-1620026] ; NNSFC Grants[11101413] ; NNSFC Grants[11371358] ; Major Program of NNSFC Grant[91530322] |
WOS研究方向 | Computer Science ; Physics |
语种 | 英语 |
WOS记录号 | WOS:000393250700011 |
出版者 | ACADEMIC PRESS INC ELSEVIER SCIENCE |
源URL | [http://ir.amss.ac.cn/handle/2S8OKBNM/24680] ![]() |
专题 | 中国科学院数学与系统科学研究院 |
通讯作者 | Wan, Xiaoliang |
作者单位 | 1.Louisiana State Univ, Dept Math, Baton Rouge, LA 70803 USA 2.Louisiana State Univ, Ctr Computat & Technol, Baton Rouge, LA 70803 USA 3.Acad Math & Syst Sci, Inst Computat Math & Sci Engn Comp, NCMIS, Beijing 100190, Peoples R China 4.Acad Math & Syst Sci, Inst Computat Math & Sci Engn Comp, LSEC, Beijing 100190, Peoples R China |
推荐引用方式 GB/T 7714 | Wan, Xiaoliang,Yu, Haijun. A dynamic-solver-consistent minimum action method: With an application to 2D Navier-Stokes equations[J]. JOURNAL OF COMPUTATIONAL PHYSICS,2017,331:209-226. |
APA | Wan, Xiaoliang,&Yu, Haijun.(2017).A dynamic-solver-consistent minimum action method: With an application to 2D Navier-Stokes equations.JOURNAL OF COMPUTATIONAL PHYSICS,331,209-226. |
MLA | Wan, Xiaoliang,et al."A dynamic-solver-consistent minimum action method: With an application to 2D Navier-Stokes equations".JOURNAL OF COMPUTATIONAL PHYSICS 331(2017):209-226. |
入库方式: OAI收割
来源:数学与系统科学研究院
浏览0
下载0
收藏0
其他版本
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。