中国科学院机构知识库网格
Chinese Academy of Sciences Institutional Repositories Grid
A dynamic-solver-consistent minimum action method: With an application to 2D Navier-Stokes equations

文献类型:期刊论文

作者Wan, Xiaoliang1,2; Yu, Haijun3,4
刊名JOURNAL OF COMPUTATIONAL PHYSICS
出版日期2017-02-15
卷号331页码:209-226
关键词Minimum action method Rare events White noise Colored noise Finite element method Numerical adaptivity
ISSN号0021-9991
DOI10.1016/j.jcp.2016.11.019
英文摘要This paper discusses the necessity and strategy to unify the development of a dynamic solver and a minimum action method (MAM) for a spatially extended system when employing the large deviation principle (LDP) to study the effects of small random perturbations. A dynamic solver is used to approximate the unperturbed system, and a minimum action method is used to approximate the LDP, which corresponds to solving an Euler-Lagrange equation related to but more complicated than the unperturbed system. We will clarify possible inconsistencies induced by independent numerical approximations of the unperturbed system and the LDP, based on which we propose to define both the dynamic solver and the MAM on the same approximation space for spatial discretization. The semi-discrete LDP can then be regarded as the exact LDP of the semi-discrete unperturbed system, which is a finite-dimensional ODE system. We achieve this methodology for the two-dimensional Navier-Stokes equations using a divergence free approximation space. The method developed can be used to study the nonlinear instability of wall-bounded parallel shear flows, and be generalized straightforwardly to three-dimensional cases. Numerical experiments are presented. (C) 2016 Elsevier Inc. All rights reserved.
资助项目AFOSR Grant[FA9550-15-1-0051] ; NSF Grant[DMS-1620026] ; NNSFC Grants[11101413] ; NNSFC Grants[11371358] ; Major Program of NNSFC Grant[91530322]
WOS研究方向Computer Science ; Physics
语种英语
WOS记录号WOS:000393250700011
出版者ACADEMIC PRESS INC ELSEVIER SCIENCE
源URL[http://ir.amss.ac.cn/handle/2S8OKBNM/24680]  
专题中国科学院数学与系统科学研究院
通讯作者Wan, Xiaoliang
作者单位1.Louisiana State Univ, Dept Math, Baton Rouge, LA 70803 USA
2.Louisiana State Univ, Ctr Computat & Technol, Baton Rouge, LA 70803 USA
3.Acad Math & Syst Sci, Inst Computat Math & Sci Engn Comp, NCMIS, Beijing 100190, Peoples R China
4.Acad Math & Syst Sci, Inst Computat Math & Sci Engn Comp, LSEC, Beijing 100190, Peoples R China
推荐引用方式
GB/T 7714
Wan, Xiaoliang,Yu, Haijun. A dynamic-solver-consistent minimum action method: With an application to 2D Navier-Stokes equations[J]. JOURNAL OF COMPUTATIONAL PHYSICS,2017,331:209-226.
APA Wan, Xiaoliang,&Yu, Haijun.(2017).A dynamic-solver-consistent minimum action method: With an application to 2D Navier-Stokes equations.JOURNAL OF COMPUTATIONAL PHYSICS,331,209-226.
MLA Wan, Xiaoliang,et al."A dynamic-solver-consistent minimum action method: With an application to 2D Navier-Stokes equations".JOURNAL OF COMPUTATIONAL PHYSICS 331(2017):209-226.

入库方式: OAI收割

来源:数学与系统科学研究院

浏览0
下载0
收藏0
其他版本

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。