中国科学院机构知识库网格
Chinese Academy of Sciences Institutional Repositories Grid
Diagonal and Toeplitz splitting iteration methods for diagonal-plus-Toeplitz linear systems from spatial fractional diffusion equations

文献类型:期刊论文

作者Bai, Zhong-Zhi1,2; Lu, Kang-Ya1,2; Pan, Jian-Yu3
刊名NUMERICAL LINEAR ALGEBRA WITH APPLICATIONS
出版日期2017-08-01
卷号24期号:4页码:15
关键词convergence Krylov subspace method matrix splitting iteration preconditioning spatial fractional diffusion equation spectral analysis
ISSN号1070-5325
DOI10.1002/nla.2093
英文摘要The finite difference discretization of the spatial fractional diffusion equations gives discretized linear systems whose coefficient matrices have a diagonal-plus-Toeplitz structure. For solving these diagonal-plus-Toeplitz linear systems, we construct a class of diagonal and Toeplitz splitting iteration methods and establish its unconditional convergence theory. In particular, we derive a sharp upper bound about its asymptotic convergence rate and deduct the optimal value of its iteration parameter. The diagonal and Toeplitz splitting iteration method naturally leads to a diagonal and circulant splitting preconditioner. Analysis shows that the eigenvalues of the corresponding preconditioned matrix are clustered around 1, especially when the discretization step-size h is small. Numerical results exhibit that the diagonal and circulant splitting preconditioner can significantly improve the convergence properties of GMRES and BiCGSTAB, and these preconditioned Krylov subspace iteration methods outperform the conjugate gradient method preconditioned by the approximate inverse circulant-plus-diagonal preconditioner proposed recently by Ng and Pan (M.K. Ng and J.-Y. Pan, SIAM J. Sci. Comput. 2010;32:1442-1464). Moreover, unlike this preconditioned conjugate gradient method, the preconditioned GMRES and BiCGSTAB methods show h-independent convergence behavior even for the spatial fractional diffusion equations of discontinuous or big-jump coefficients.
资助项目National Natural Science Foundation[11671393] ; National Natural Science Foundation[11321061]
WOS研究方向Mathematics
语种英语
WOS记录号WOS:000405568800004
出版者WILEY
源URL[http://ir.amss.ac.cn/handle/2S8OKBNM/26119]  
专题计算数学与科学工程计算研究所
通讯作者Bai, Zhong-Zhi
作者单位1.Chinese Acad Sci, Acad Math & Syst Sci, Inst Computat Math & Sci Engn Comp, State Key Lab Sci Engn Comp, POB 2719, Beijing 100190, Peoples R China
2.Univ Chinese Acad Sci, Sch Math Sci, Beijing 100049, Peoples R China
3.East China Normal Univ, Dept Math, Shanghai 200241, Peoples R China
推荐引用方式
GB/T 7714
Bai, Zhong-Zhi,Lu, Kang-Ya,Pan, Jian-Yu. Diagonal and Toeplitz splitting iteration methods for diagonal-plus-Toeplitz linear systems from spatial fractional diffusion equations[J]. NUMERICAL LINEAR ALGEBRA WITH APPLICATIONS,2017,24(4):15.
APA Bai, Zhong-Zhi,Lu, Kang-Ya,&Pan, Jian-Yu.(2017).Diagonal and Toeplitz splitting iteration methods for diagonal-plus-Toeplitz linear systems from spatial fractional diffusion equations.NUMERICAL LINEAR ALGEBRA WITH APPLICATIONS,24(4),15.
MLA Bai, Zhong-Zhi,et al."Diagonal and Toeplitz splitting iteration methods for diagonal-plus-Toeplitz linear systems from spatial fractional diffusion equations".NUMERICAL LINEAR ALGEBRA WITH APPLICATIONS 24.4(2017):15.

入库方式: OAI收割

来源:数学与系统科学研究院

浏览0
下载0
收藏0
其他版本

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。