The monotone convergence of a class of parallel nonlinear relaxation methods for nonlinear complementarity problems
文献类型:期刊论文
作者 | Bai, ZZ |
刊名 | COMPUTERS & MATHEMATICS WITH APPLICATIONS
![]() |
出版日期 | 1996-06-01 |
卷号 | 31期号:12页码:17-33 |
关键词 | nonlinear complementarity problem nonlinear multisplitting monotonicity global convergence |
ISSN号 | 0898-1221 |
英文摘要 | We set up a class of parallel nonlinear multisplitting AOR methods by directly multisplitting the nonlinear mapping involved in the nonlinear complementarity problems. The different choices of the relaxation parameters can yield all the known and a lot of new relaxation methods, as well as a lot of new relaxed parallel nonlinear multisplitting methods for solving the nonlinear complementarity problems. The two-sided approximation properties and the influences on the convergence rates from the relaxation parameters about our new methods are shown, and sufficient conditions guaranteeing the methods to converge globally are discussed. Finally, a lot of numerical results show that our new methods are feasible and efficient. |
语种 | 英语 |
WOS记录号 | WOS:A1996UV85800004 |
出版者 | PERGAMON-ELSEVIER SCIENCE LTD |
源URL | [http://ir.amss.ac.cn/handle/2S8OKBNM/28883] ![]() |
专题 | 中国科学院数学与系统科学研究院 |
通讯作者 | Bai, ZZ |
作者单位 | CHINESE ACAD SCI,STATE KEY LAB SCI ENGN COMP,INST COMPUTAT MATH & SCI ENGN COMP,POB 2719,BEIJING 100080,PEOPLES R CHINA |
推荐引用方式 GB/T 7714 | Bai, ZZ. The monotone convergence of a class of parallel nonlinear relaxation methods for nonlinear complementarity problems[J]. COMPUTERS & MATHEMATICS WITH APPLICATIONS,1996,31(12):17-33. |
APA | Bai, ZZ.(1996).The monotone convergence of a class of parallel nonlinear relaxation methods for nonlinear complementarity problems.COMPUTERS & MATHEMATICS WITH APPLICATIONS,31(12),17-33. |
MLA | Bai, ZZ."The monotone convergence of a class of parallel nonlinear relaxation methods for nonlinear complementarity problems".COMPUTERS & MATHEMATICS WITH APPLICATIONS 31.12(1996):17-33. |
入库方式: OAI收割
来源:数学与系统科学研究院
浏览0
下载0
收藏0
其他版本
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。