中国科学院机构知识库网格
Chinese Academy of Sciences Institutional Repositories Grid
The monotone convergence of a class of parallel nonlinear relaxation methods for nonlinear complementarity problems

文献类型:期刊论文

作者Bai, ZZ
刊名COMPUTERS & MATHEMATICS WITH APPLICATIONS
出版日期1996-06-01
卷号31期号:12页码:17-33
关键词nonlinear complementarity problem nonlinear multisplitting monotonicity global convergence
ISSN号0898-1221
英文摘要We set up a class of parallel nonlinear multisplitting AOR methods by directly multisplitting the nonlinear mapping involved in the nonlinear complementarity problems. The different choices of the relaxation parameters can yield all the known and a lot of new relaxation methods, as well as a lot of new relaxed parallel nonlinear multisplitting methods for solving the nonlinear complementarity problems. The two-sided approximation properties and the influences on the convergence rates from the relaxation parameters about our new methods are shown, and sufficient conditions guaranteeing the methods to converge globally are discussed. Finally, a lot of numerical results show that our new methods are feasible and efficient.
语种英语
WOS记录号WOS:A1996UV85800004
出版者PERGAMON-ELSEVIER SCIENCE LTD
源URL[http://ir.amss.ac.cn/handle/2S8OKBNM/28883]  
专题中国科学院数学与系统科学研究院
通讯作者Bai, ZZ
作者单位CHINESE ACAD SCI,STATE KEY LAB SCI ENGN COMP,INST COMPUTAT MATH & SCI ENGN COMP,POB 2719,BEIJING 100080,PEOPLES R CHINA
推荐引用方式
GB/T 7714
Bai, ZZ. The monotone convergence of a class of parallel nonlinear relaxation methods for nonlinear complementarity problems[J]. COMPUTERS & MATHEMATICS WITH APPLICATIONS,1996,31(12):17-33.
APA Bai, ZZ.(1996).The monotone convergence of a class of parallel nonlinear relaxation methods for nonlinear complementarity problems.COMPUTERS & MATHEMATICS WITH APPLICATIONS,31(12),17-33.
MLA Bai, ZZ."The monotone convergence of a class of parallel nonlinear relaxation methods for nonlinear complementarity problems".COMPUTERS & MATHEMATICS WITH APPLICATIONS 31.12(1996):17-33.

入库方式: OAI收割

来源:数学与系统科学研究院

浏览0
下载0
收藏0
其他版本

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。