Well-balanced discontinuous Galerkin method and finite volume WENO scheme based on hydrostatic reconstruction for blood flow model in arteries
文献类型:期刊论文
作者 | Li, Gang1,2; Delestre, Olivier3,4; Yuan, Li5,6![]() |
刊名 | INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN FLUIDS
![]() |
出版日期 | 2018-03-10 |
卷号 | 86期号:7页码:491-508 |
关键词 | blood flow model discontinuous Galerkin method finite volume WENO scheme hydrostatic reconstruction source term well-balanced property |
ISSN号 | 0271-2091 |
DOI | 10.1002/fld.4463 |
英文摘要 | The blood flow model in arteries admits the steady state solutions, for which the flux gradient is nonzero, and is exactly balanced by the source term. In this paper, by means of hydrostatic reconstruction, we construct a high order discontinuous Galerkin method, which exactly preserves the dead-man steady state, which is characterized by a discharge equal to zero (analogue to hydrostatic equilibrium). Moreover, the method maintains genuine high order of accuracy. Subsequently, we apply the key idea to finite volume weighted essentially non-oscillatory schemes and obtain a well-balanced finite volume weighted essentially non-oscillatory scheme. Extensive numerical experiments are performed to verify the well-balanced property, high order accuracy, as well as good resolution for smooth and discontinuous solutions. |
资助项目 | Natural Science Foundation of PR China[11201254] ; Natural Science Foundation of PR China[11401332] ; Natural Science Foundation of PR China[11321061] ; Natural Science Foundation of PR China[11261160486] ; Project for Scientific Plan of Higher Education in Shandong Province of PR China[J12LI08] ; Project for Scientific Plan of Higher Education in Shandong Province of PR China[2010CB731505] |
WOS研究方向 | Computer Science ; Mathematics ; Mechanics ; Physics |
语种 | 英语 |
WOS记录号 | WOS:000424200200003 |
出版者 | WILEY |
源URL | [http://ir.amss.ac.cn/handle/2S8OKBNM/29380] ![]() |
专题 | 计算数学与科学工程计算研究所 |
通讯作者 | Li, Gang |
作者单位 | 1.Qingdao Univ, Sch Math & Stat, Qingdao 266071, Shandong, Peoples R China 2.Qingdao Univ, Ctr Computat Mech & Engn Simulat, Qingdao 266071, Shandong, Peoples R China 3.Univ Cote Azur, CNRS, LJAD UMR 7351, Nice, France 4.Polytech Nice Sophia, Biot, France 5.Chinese Acad Sci, LSEC, Inst Computat Math & Sci Engn Comp, Acad Math & Syst Sci, Beijing 100190, Peoples R China 6.Chinese Acad Sci, NCMIS, Inst Computat Math & Sci Engn Comp, Acad Math & Syst Sci, Beijing 100190, Peoples R China |
推荐引用方式 GB/T 7714 | Li, Gang,Delestre, Olivier,Yuan, Li. Well-balanced discontinuous Galerkin method and finite volume WENO scheme based on hydrostatic reconstruction for blood flow model in arteries[J]. INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN FLUIDS,2018,86(7):491-508. |
APA | Li, Gang,Delestre, Olivier,&Yuan, Li.(2018).Well-balanced discontinuous Galerkin method and finite volume WENO scheme based on hydrostatic reconstruction for blood flow model in arteries.INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN FLUIDS,86(7),491-508. |
MLA | Li, Gang,et al."Well-balanced discontinuous Galerkin method and finite volume WENO scheme based on hydrostatic reconstruction for blood flow model in arteries".INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN FLUIDS 86.7(2018):491-508. |
入库方式: OAI收割
来源:数学与系统科学研究院
浏览0
下载0
收藏0
其他版本
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。