中国科学院机构知识库网格
Chinese Academy of Sciences Institutional Repositories Grid
Hierarchized band gap and enhanced optical responses of trivalent rare-earth metal nitrates due to (d-p)pi conjugation interactions

文献类型:期刊论文

作者Lei, BH (Lei, Bing-Hua); Kong, QR (Kong, Qingrong); Yang, ZH (Yang, Zhihua); Yang, Y (Yang, Yun); Wang, Y (Wang, Ying); Pan, SL (Pan, Shilie)
刊名JOURNAL OF MATERIALS CHEMISTRY C
出版日期2016
卷号4期号:26页码:6295-6301
ISSN号2050-7526
DOI10.1039/c6tc01512c
英文摘要

Introducing NO3 groups or particular rare-earth metals is one strategy that may yield optical functional materials without influencing the transmittance in the ultraviolet (UV)/deep-UV region. In this work, a new crystal, Na4La2(NO3)(10)center dot 2H(2)O (NLN), containing these two units was obtained for the first time by slow evaporation method at room temperature with dimensions of 3 x 2 x 0.75 mm(3). It possesses an unusual, high UV cutoff edge and therefore totally differs from alkali/alkaline-earth metal nitrates and rare-earth metal borates. K2La(NO3)(5)center dot 2H(2)O (KLN), which resembles NLN structurally, undergoes a noticeable improvement in its linear optical properties compared with NLN and has a large second harmonic generation effect. To clarify the inner mechanism or synergy of NO3 and rare-earth metals in influencing electronic structure and optical properties, trivalent rare-earth metal nitrates such as Na4La2(NO3)(10)center dot 2H(2)O and K2La(NO3)(5)center dot 2H(2)O have been studied systematically from first-principles, and compared with related borates. This has revealed that the unique (d-p)pi interaction generated between the trivalent rare-earth metal and oxygen of NO3 narrows the large band gap, enhances the second harmonic generation (SHG) effect and strengthens the optical anisotropy when the coordination environment is non-uniform in electronegativity. Specifically, the hierarchical band gap is related to the strength of these interactions, which itself depends on the delocalization of O-2p orbitals in the groups. This insight offers a way to design new functional materials with special characteristics by carefully selecting the cations or anionic groups.

WOS记录号WOS:000379492900014
源URL[http://ir.xjipc.cas.cn/handle/365002/5507]  
专题新疆理化技术研究所_中国科学院特殊环境功能材料与器件重点试验室
新疆理化技术研究所_材料物理与化学研究室
通讯作者Yang, ZH (Yang, Zhihua); Pan, SL (Pan, Shilie)
作者单位1.Chinese Acad Sci, Xinjiang Key Lab Elect Informat Mat & Devices, Xinjiang Tech Inst Phys & Chem, Key Lab Funct Mat & Devices Special Environm, 40-1 South Beijing Rd, Urumqi 830011, Peoples R China
2.Univ Chinese Acad Sci, Beijing 100049, Peoples R China
3.Xinjiang Normal Univ, Coll Chem & Chem Engn, Urumqi 830054, Peoples R China
推荐引用方式
GB/T 7714
Lei, BH ,Kong, QR ,Yang, ZH ,et al. Hierarchized band gap and enhanced optical responses of trivalent rare-earth metal nitrates due to (d-p)pi conjugation interactions[J]. JOURNAL OF MATERIALS CHEMISTRY C,2016,4(26):6295-6301.
APA Lei, BH ,Kong, QR ,Yang, ZH ,Yang, Y ,Wang, Y ,&Pan, SL .(2016).Hierarchized band gap and enhanced optical responses of trivalent rare-earth metal nitrates due to (d-p)pi conjugation interactions.JOURNAL OF MATERIALS CHEMISTRY C,4(26),6295-6301.
MLA Lei, BH ,et al."Hierarchized band gap and enhanced optical responses of trivalent rare-earth metal nitrates due to (d-p)pi conjugation interactions".JOURNAL OF MATERIALS CHEMISTRY C 4.26(2016):6295-6301.

入库方式: OAI收割

来源:新疆理化技术研究所

浏览0
下载0
收藏0
其他版本

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。