Microporous Framework Induced Synthesis of Single-Atom Dispersed Fe-N-C Acidic ORR Catalyst and Its in Situ Reduced Fe-N-4 Active Site Identification Revealed by X-ray Absorption Spectroscopy
文献类型:期刊论文
作者 | Xiao, ML; Zhu, JB; Ma, L; Jin, Z; Ge, J; Deng, XJ; Hou, Y; He, QG; Li, JK; Jia, QY |
刊名 | ACS CATALYSIS
![]() |
出版日期 | 2018 |
卷号 | 8期号:4页码:2824-2832 |
关键词 | Oxygen Reduction Reaction Electrolyte Fuel-cells Nitrogen-doped Graphene Fe/n/c-catalysts Carbon Electrocatalysts Transition-metal Iron Efficient Cobalt Phthalocyanine |
ISSN号 | 2155-5435 |
DOI | 10.1021/acscatal.8b00138 |
文献子类 | 期刊论文 |
英文摘要 | Developing highly efficient, low-cost oxygen reduction catalysts, especially in acidic medium, is of significance toward fuel cell commercialization. Although pyrolyzed Fe-N-C catalysts have been regarded as alternatives to platinum based catalytic materials, further improvement requires precise control of the Fe-N-x structure at the molecular level and a comprehensive understanding of catalytic site structure and the ORR mechanism on these materials. In this report, we present a microporous metal-organic-framework-confined strategy toward the preferable formation of single-atom dispersed catalysts. The onset potential for Fe-N-C is 0.92 V, comparable to that of Pt/C and outperforming most noble-metal-free catalysts ever reported. A high-spin Fe3+-N-4 configuration is revealed by the Fe-57 Mossbauer spectrum and X-ray absorption spectroscopy for Fe L-edge, which will convert to Fe2+-N-4 at low potential. The in situ reduced Fe2+-N-4 moiety from high-spin O-x-Fe3+-N-4 contributes to most of the ORR activity due to its high turnover frequency (TOF) of ca. 1.71 e s(-1) sites(-1). |
语种 | 英语 |
WOS记录号 | WOS:000430154100025 |
源URL | [http://ir.sinap.ac.cn/handle/331007/29072] ![]() |
专题 | 上海应用物理研究所_中科院上海应用物理研究所2011-2017年 |
作者单位 | 1.Xiao, ML 2.Zhu, JB 3.Ma, L 4.Jin, Z 5.Ge, J 6.Deng, XJ 7.Hou, Y 8.He, QG 9.Li, JK 10.Jia, QY |
推荐引用方式 GB/T 7714 | Xiao, ML,Zhu, JB,Ma, L,et al. Microporous Framework Induced Synthesis of Single-Atom Dispersed Fe-N-C Acidic ORR Catalyst and Its in Situ Reduced Fe-N-4 Active Site Identification Revealed by X-ray Absorption Spectroscopy[J]. ACS CATALYSIS,2018,8(4):2824-2832. |
APA | Xiao, ML.,Zhu, JB.,Ma, L.,Jin, Z.,Ge, J.,...&Xing, W.(2018).Microporous Framework Induced Synthesis of Single-Atom Dispersed Fe-N-C Acidic ORR Catalyst and Its in Situ Reduced Fe-N-4 Active Site Identification Revealed by X-ray Absorption Spectroscopy.ACS CATALYSIS,8(4),2824-2832. |
MLA | Xiao, ML,et al."Microporous Framework Induced Synthesis of Single-Atom Dispersed Fe-N-C Acidic ORR Catalyst and Its in Situ Reduced Fe-N-4 Active Site Identification Revealed by X-ray Absorption Spectroscopy".ACS CATALYSIS 8.4(2018):2824-2832. |
入库方式: OAI收割
来源:上海应用物理研究所
浏览0
下载0
收藏0
其他版本
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。