中国科学院机构知识库网格
Chinese Academy of Sciences Institutional Repositories Grid
Adaptive variable selection for extended Nijboer-Zernike aberration retrieval via lasso

文献类型:期刊论文

作者Wang, B.; H. A. Diao; J. H. Guo; X. Y. Liu and Y. H. Wu
刊名Optics Communications
出版日期2017
卷号385
英文摘要In this paper, we propose extended Nijboer-Zernike (ENZ) method for aberration retrieval by incorporating lasso variable selection method which can improve the accuracy of aberration retrieval. The proposed model is computed by the state-of-art algorithm of the Bregman iterative algorithm (Bregman, 1967 [1]; Cai et al., 2008 [2]; Yin et al., 2008 [3]) for L-1 minimization problem with adaptive regularized parameter choice based on the strategy (Ito et al., 2011 [4]). Numerical simulations for real world and simulated phase data validate the effectiveness of the proposed ENZ AR via lasso.
语种英语
源URL[http://ir.ciomp.ac.cn/handle/181722/59237]  
专题长春光学精密机械与物理研究所_中科院长春光机所知识产出
推荐引用方式
GB/T 7714
Wang, B.,H. A. Diao,J. H. Guo,et al. Adaptive variable selection for extended Nijboer-Zernike aberration retrieval via lasso[J]. Optics Communications,2017,385.
APA Wang, B.,H. A. Diao,J. H. Guo,&X. Y. Liu and Y. H. Wu.(2017).Adaptive variable selection for extended Nijboer-Zernike aberration retrieval via lasso.Optics Communications,385.
MLA Wang, B.,et al."Adaptive variable selection for extended Nijboer-Zernike aberration retrieval via lasso".Optics Communications 385(2017).

入库方式: OAI收割

来源:长春光学精密机械与物理研究所

浏览0
下载0
收藏0
其他版本

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。