中国科学院机构知识库网格
Chinese Academy of Sciences Institutional Repositories Grid
Auto Coder-Decoder (CODEC) Model based Sparse Representation for Image Super Resolution

文献类型:会议论文

作者Qieshi Zhang; Liyan Gu; Jun Cheng; Xiaojun Wu
出版日期2017
会议地点中国上海
英文摘要In our daily life, the high quality image is widely used in varieties of fields, but sometimes we cannot capture the image with idea resolution due to some influences. For solving the resolution limitation of imaging sensors, the image super resolution (SR) representation technology is widely researched. Considering the advantage of sparse representation, the dictionary learning based methods is widely studied. However, landmark atoms cannot provide the representations of images, since the general feature extractors is universally applicable in feature extraction. To overcome the drawbacks, an auto coderdecoder (CODEC) model is proposed to extract representative features from low resolution (LR) images. The experimental results indicate the proposed method can obtain better effect than other methods.
语种英语
源URL[http://ir.siat.ac.cn:8080/handle/172644/11828]  
专题深圳先进技术研究院_集成所
作者单位2017
推荐引用方式
GB/T 7714
Qieshi Zhang,Liyan Gu,Jun Cheng,et al. Auto Coder-Decoder (CODEC) Model based Sparse Representation for Image Super Resolution[C]. 见:. 中国上海.

入库方式: OAI收割

来源:深圳先进技术研究院

浏览0
下载0
收藏0
其他版本

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。