中国科学院机构知识库网格
Chinese Academy of Sciences Institutional Repositories Grid
Energy-Efficient Bio-Mimic Silicon Neuron and STDP Synapse for Analogue Neuromorphic VLSI

文献类型:会议论文

作者Jinyong Zhang; Shing-Chow Chan; Hui Li; Nannan Zhang; Lei Wang
出版日期2017
会议日期2017
会议地点德国
英文摘要Brain is able to process sophisticated information, to handle high computational throughput and to make decisions while consuming less energy with smaller size in comparison with the current Von Neumann system. Building VLSI brain-like systems in silicon draws growing interest in recent years [1, 2]. However, the main challenges of these systems are large dimension and low computationally efficient as well as energy-wasting. The analog implementation is considered as a more promising solution for future neuromorphic VLSI sy
语种英语
源URL[http://ir.siat.ac.cn:8080/handle/172644/12202]  
专题深圳先进技术研究院_医工所
作者单位2017
推荐引用方式
GB/T 7714
Jinyong Zhang,Shing-Chow Chan,Hui Li,et al. Energy-Efficient Bio-Mimic Silicon Neuron and STDP Synapse for Analogue Neuromorphic VLSI[C]. 见:. 德国. 2017.

入库方式: OAI收割

来源:深圳先进技术研究院

浏览0
下载0
收藏0
其他版本

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。