Evaluation of no-reference models to assess image sharpness
文献类型:会议论文
作者 | Guangzhe Dai; Zhaoyang Wang; Yaoqing Li; Qian Chen; Shaode Yu; Yaoqin Xie |
出版日期 | 2017 |
会议日期 | 2017 |
会议地点 | 澳门 |
英文摘要 | In the past decades, massive attention has been paid toward no-reference or blind image sharpness assessment (BISA) and many algorithms have achieved good performance. This paper provides an evaluation of 12 state-of-the-art BISA methods based on Gaussian blurring images collected from four simulation databases (LIVE, CSIQ, TID2008 and TID2013). The prediction performance is estimated with two metrics after fouror five-parameter non-linear score fitting. Experimental results indicate that the algorithm RISE achieves the best performance. Additionally, the effect of different non-linear scoring fitting methods on the performance evaluation is insignificant. In general, RISE is a visible and significant milestone for BISA algorithm development at present and the future work might be toward novel and real-life applications |
语种 | 英语 |
源URL | [http://ir.siat.ac.cn:8080/handle/172644/12207] ![]() |
专题 | 深圳先进技术研究院_医工所 |
作者单位 | 2017 |
推荐引用方式 GB/T 7714 | Guangzhe Dai,Zhaoyang Wang,Yaoqing Li,et al. Evaluation of no-reference models to assess image sharpness[C]. 见:. 澳门. 2017. |
入库方式: OAI收割
来源:深圳先进技术研究院
浏览0
下载0
收藏0
其他版本
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。