中国科学院机构知识库网格
Chinese Academy of Sciences Institutional Repositories Grid
wsrf: An R Package for Classification with Scalable Weighted Subspace Random Forests.

文献类型:期刊论文

作者Zhao, He; Williams, Graham J.; Huang, Joshua Zhexue
刊名JOURNAL OF STATISTICAL SOFTWARE
出版日期2017
文献子类期刊论文
英文摘要We describe a parallel implementation in R of the weighted subspace random forest algorithm (Xu, Huang, Williams, Wang, and Ye 2012) available as the wsrfpackage. A novel variable weighting method is used for variable subspace selection in place of the traditional approach of random variable sampling. This new approach is particularly useful in building models for high dimensional data - often consisting of thousands of variables. Parallel computation is used to take advantage of multi-core machines and clusters of machines to build random forest models from high dimensional data in considerably shorter times. A series of experiments presented in this paper demonstrates that wsrf is faster than existing packages whilst retaining and often improving on the classificationperformance, particularly for high dimensional data.
URL标识查看原文
语种英语
源URL[http://ir.siat.ac.cn:8080/handle/172644/12565]  
专题深圳先进技术研究院_数字所
作者单位JOURNAL OF STATISTICAL SOFTWARE
推荐引用方式
GB/T 7714
Zhao, He,Williams, Graham J.,Huang, Joshua Zhexue. wsrf: An R Package for Classification with Scalable Weighted Subspace Random Forests.[J]. JOURNAL OF STATISTICAL SOFTWARE,2017.
APA Zhao, He,Williams, Graham J.,&Huang, Joshua Zhexue.(2017).wsrf: An R Package for Classification with Scalable Weighted Subspace Random Forests..JOURNAL OF STATISTICAL SOFTWARE.
MLA Zhao, He,et al."wsrf: An R Package for Classification with Scalable Weighted Subspace Random Forests.".JOURNAL OF STATISTICAL SOFTWARE (2017).

入库方式: OAI收割

来源:深圳先进技术研究院

浏览0
下载0
收藏0
其他版本

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。