中国科学院机构知识库网格
Chinese Academy of Sciences Institutional Repositories Grid
Multi-label Learning for Predicting the Activities of Antimicrobial Peptides

文献类型:期刊论文

作者Pu Wang; Ruiquan Ge; Liming Liu; Xuan Xiao; Ye Li; Yunpeng Cai
刊名Scientific Reports
出版日期2017
文献子类期刊论文
英文摘要Antimicrobial peptides (AMPs) are peptide antibiotics with a broad spectrum of antimicrobial activities. Activity prediction of AMPs from their amino acid sequences is of great therapeutic importance but imposes challenges on prediction methods due to label interactions. In this paper we propose a novel multi-label learning model to address this problem. A weighted K-nearest neighbor classifier is adopted for efficient representation learning of the sequence data. A multiple linear regression model is then employed to learn a mapping from the classifier score vectors to the target labels, with label correlations considered. Several popular multi-label learning algorithms and feature extraction methods were tested on a comprehensive, up-to-date AMP dataset with twelve biological activities covered and its filtered version with five activities covered. The experimental results showed that our proposed method has competitive performance with previous works and could be used as a powerful engine for activity prediction of AMPs.
URL标识查看原文
语种英语
源URL[http://ir.siat.ac.cn:8080/handle/172644/12602]  
专题深圳先进技术研究院_数字所
作者单位Scientific Reports
推荐引用方式
GB/T 7714
Pu Wang,Ruiquan Ge,Liming Liu,et al. Multi-label Learning for Predicting the Activities of Antimicrobial Peptides[J]. Scientific Reports,2017.
APA Pu Wang,Ruiquan Ge,Liming Liu,Xuan Xiao,Ye Li,&Yunpeng Cai.(2017).Multi-label Learning for Predicting the Activities of Antimicrobial Peptides.Scientific Reports.
MLA Pu Wang,et al."Multi-label Learning for Predicting the Activities of Antimicrobial Peptides".Scientific Reports (2017).

入库方式: OAI收割

来源:深圳先进技术研究院

浏览0
下载0
收藏0
其他版本

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。