中国科学院机构知识库网格
Chinese Academy of Sciences Institutional Repositories Grid
Rectified-Linear-Unit-Based Deep Learning for Biomedical Multi-label Data.

文献类型:期刊论文

作者Wang, Pu ;  Ge, Ruiquan ;  Xiao, Xuan ;  Cai, Yunpeng ;  Wang, Guoqing ;  Zhou, Fengfeng
刊名INTERDISCIPLINARY SCIENCES-COMPUTATIONAL LIFE SCIENCES
出版日期2017
文献子类期刊论文
英文摘要Disease diagnosis is one of the major data mining questions by the clinicians. The current diagnosis models usually have a strong assumption that one patient has only one disease, i.e. a single-label data mining problem. But the patients, especially when at the late stages, may have more than one disease and require a multi-label diagnosis. The multi-label data mining is much more difficult than a single-label one, and very few algorithms have been developed for this situation. Deep learning is a data mining algorithm with highly dense inner structure and has achieved many successful applications in the other areas. We propose a hypothesis that rectified-linear-unit-based deep learning algorithm may also be good at the clinical questions, by revising the last layer as a multi-label output. The proof-of-concept experimental data support the hypothesis, and the community may be interested in trying more applications.
URL标识查看原文
语种英语
源URL[http://ir.siat.ac.cn:8080/handle/172644/12611]  
专题深圳先进技术研究院_数字所
作者单位INTERDISCIPLINARY SCIENCES-COMPUTATIONAL LIFE SCIENCES
推荐引用方式
GB/T 7714
Wang, Pu , Ge, Ruiquan , Xiao, Xuan ,et al. Rectified-Linear-Unit-Based Deep Learning for Biomedical Multi-label Data.[J]. INTERDISCIPLINARY SCIENCES-COMPUTATIONAL LIFE SCIENCES,2017.
APA Wang, Pu , Ge, Ruiquan , Xiao, Xuan , Cai, Yunpeng , Wang, Guoqing ,& Zhou, Fengfeng.(2017).Rectified-Linear-Unit-Based Deep Learning for Biomedical Multi-label Data..INTERDISCIPLINARY SCIENCES-COMPUTATIONAL LIFE SCIENCES.
MLA Wang, Pu ,et al."Rectified-Linear-Unit-Based Deep Learning for Biomedical Multi-label Data.".INTERDISCIPLINARY SCIENCES-COMPUTATIONAL LIFE SCIENCES (2017).

入库方式: OAI收割

来源:深圳先进技术研究院

浏览0
下载0
收藏0
其他版本

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。