Efficient fullerene-free solar cells with wide optical band gap polymers based on fluorinated benzotriazole and asymmetric benzodithiophene
文献类型:期刊论文
作者 | Liu, Zhe1; Liu, Deyu2,4; Zhang, Kaili1; Zhu, Tingting1; Zhong, Yaqian1; Li, Feng3; Li, Yonghai2; Sun, Mingliang1; Yang, Renqiang2 |
刊名 | JOURNAL OF MATERIALS CHEMISTRY A
![]() |
出版日期 | 2017-11-07 |
卷号 | 5期号:41页码:21650-21657 |
DOI | 10.1039/c7ta07390a |
文献子类 | Article |
英文摘要 | In this work, alpha- and beta-position naphthalene substituents as side chains on asymmetric BDT were used as donor building blocks to build wide bandgap (WBG) donor materials (P alpha NBDT-T1 and P beta NBDT-T1) with fluorinated benzotriazole (T1) as the acceptor unit. The two co-polymers were used to build polymer solar cells (PSCs) with PC71BM or ITIC acceptor material. In ITIC acceptor material based devices, the P alpha NBDT-T1 co-polymer with a larger dihedral angle between main backbone and naphthalene ring achieved a higher power conversion efficiency (PCE) of 9.60% with improved short-circuit current density (J(SC)) and fill factor (FF) compared with P beta NBDT-T1, which was ascribed to the excellent morphology of the blended film. The open circuit voltage (V-OC) was also maintained at a decent level upon introducing these naphthalene rings due to their high ionization potential and low electron density. Interestingly, for PC71BM based devices, the two polymers show a reverse situation compared with an ITIC system. The P beta NBDT-T1 with a small dihedral angle between the main backbone and naphthalene rings shows a slightly higher performance than P alpha NBDT-T1. However, in the PC71BM system, both polymers did not exhibit ideal optical performance due to their unmatched absorption spectrum. These phenomena indicate that the asymmetric BDTs have great potential towards achieving high optical performance with non-fullerene acceptor materials. |
WOS关键词 | POWER CONVERSION EFFICIENCY ; MOLECULE ELECTRON-ACCEPTORS ; ORGANIC PHOTOVOLTAICS ; ACHIEVE ; DONOR |
WOS研究方向 | Chemistry ; Energy & Fuels ; Materials Science |
语种 | 英语 |
WOS记录号 | WOS:000413734800004 |
资助机构 | NSFC(51773220 ; 51573205 ; 21274134) |
源URL | [http://ir.qibebt.ac.cn/handle/337004/9695] ![]() |
专题 | 青岛生物能源与过程研究所_先进有机功能材料团队 |
作者单位 | 1.Ocean Univ China, Inst Mat Sci & Engn, Qingdao 266100, Peoples R China 2.Chinese Acad Sci, Qingdao Inst Bioenergy & Bioproc Technol, CAS Key Lab Biobased Mat, Qingdao 266101, Peoples R China 3.Qingdao Univ Sci & Technol, Sch Polymer Sci & Engn, Minist Educ Shandong Prov, Key Lab Rubber Plast, 53 Zhengzhou Rd, Qingdao 266042, Peoples R China 4.Univ Chinese Acad Sci, Beijing 100049, Peoples R China |
推荐引用方式 GB/T 7714 | Liu, Zhe,Liu, Deyu,Zhang, Kaili,et al. Efficient fullerene-free solar cells with wide optical band gap polymers based on fluorinated benzotriazole and asymmetric benzodithiophene[J]. JOURNAL OF MATERIALS CHEMISTRY A,2017,5(41):21650-21657. |
APA | Liu, Zhe.,Liu, Deyu.,Zhang, Kaili.,Zhu, Tingting.,Zhong, Yaqian.,...&Yang, Renqiang.(2017).Efficient fullerene-free solar cells with wide optical band gap polymers based on fluorinated benzotriazole and asymmetric benzodithiophene.JOURNAL OF MATERIALS CHEMISTRY A,5(41),21650-21657. |
MLA | Liu, Zhe,et al."Efficient fullerene-free solar cells with wide optical band gap polymers based on fluorinated benzotriazole and asymmetric benzodithiophene".JOURNAL OF MATERIALS CHEMISTRY A 5.41(2017):21650-21657. |
入库方式: OAI收割
来源:青岛生物能源与过程研究所
浏览0
下载0
收藏0
其他版本
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。