Spectral Invariant Provides a Practical Modeling Approach for Future Biophysical Variable Estimations
文献类型:期刊论文
作者 | Zeng, Yelu1,2; Xu, Baodong2,3; Yin, Gaofei4![]() |
刊名 | REMOTE SENSING
![]() |
出版日期 | 2018-10-01 |
卷号 | 10期号:10页码:17 |
关键词 | spectral invariant radiative transfer canopy structure leaf inclination angle hot spot |
ISSN号 | 2072-4292 |
DOI | 10.3390/rs10101508 |
通讯作者 | Li, Jing(lijing01@radi.ac.cn) |
英文摘要 | This paper presents a simple radiative transfer model based on spectral invariant properties (SIP). The canopy structure parameters, including the leaf angle distribution and multi-angular clumping index, are explicitly described in the SIP model. The SIP model has been evaluated on its bidirectional reflectance factor (BRF) in the angular space at the radiation transfer model intercomparison platform, and in the spectrum space by the PROSPECT+SAIL (PROSAIL) model. The simulations of BRF by SIP agreed well with the reference values in both the angular space and spectrum space, with a root-mean-square-error (RMSE) of 0.006. When compared with the widely-used Soil-Canopy Observation of Photochemistry and Energy fluxes (SCOPE) model on fPAR, the RMSE was 0.006 and the R-2 was 0.99, which shows a high accuracy. This study also suggests the newly proposed vegetation index, the near-infrared (NIR) reflectance of vegetation (NIRv), was a good linear approximation of the canopy structure parameter, the directional area scattering factor (DASF), with an R-2 of 0.99. NIRv was not influenced much by the soil background contribution, but was sensitive to the leaf inclination angle. The sensitivity of NIRv to canopy structure and the robustness of NIRv to the soil background suggest NIRv is a promising index in future biophysical variable estimations with the support of the SIP model, especially for the Deep Space Climate Observatory (DSCOVR) Earth Polychromatic Imaging Camera (EPIC) observations near the hot spot directions. |
WOS关键词 | LEAF-AREA INDEX ; PHOTON RECOLLISION PROBABILITY ; HEIHE RIVER-BASIN ; RADIATIVE-TRANSFER ; VEGETATION CANOPIES ; REFLECTANCE MODEL ; LIGHT-SCATTERING ; PLANT CANOPIES ; RETRIEVAL ; LAI |
资助项目 | National Natural Science Foundation of China[41701401] ; National Key Research and Development Program[2018YFA0605503] ; GF6 Project[30-Y20A03-9003-17/18] |
WOS研究方向 | Remote Sensing |
语种 | 英语 |
WOS记录号 | WOS:000448555800008 |
出版者 | MDPI |
资助机构 | National Natural Science Foundation of China ; National Key Research and Development Program ; GF6 Project |
源URL | [http://ir.imde.ac.cn/handle/131551/24234] ![]() |
专题 | 成都山地灾害与环境研究所_数字山地与遥感应用中心 |
通讯作者 | Li, Jing |
作者单位 | 1.Carnegie Inst Sci, Dept Global Ecol, Stanford, CA 94305 USA 2.State Key Lab Remote Sensing Sci, Beijing 100101, Peoples R China 3.Huazhong Agr Univ, Macro Agr Res Inst, Coll Resource & Environm, 1 Shizishan St, Wuhan 430070, Hubei, Peoples R China 4.Chinese Acad Sci, Inst Mt Hazards & Environm, Res Ctr Digital Mt & Remote Sensing Applicat, Chengdu 610041, Sichuan, Peoples R China 5.Purdue Univ, Sch Aeronaut & Astronaut, W Lafayette, IN 47907 USA 6.Hunan Univ, Coll Elect & Informat Engn, Changsha 410082, Hunan, Peoples R China |
推荐引用方式 GB/T 7714 | Zeng, Yelu,Xu, Baodong,Yin, Gaofei,et al. Spectral Invariant Provides a Practical Modeling Approach for Future Biophysical Variable Estimations[J]. REMOTE SENSING,2018,10(10):17. |
APA | Zeng, Yelu.,Xu, Baodong.,Yin, Gaofei.,Wu, Shengbiao.,Hu, Guoqing.,...&Li, Jing.(2018).Spectral Invariant Provides a Practical Modeling Approach for Future Biophysical Variable Estimations.REMOTE SENSING,10(10),17. |
MLA | Zeng, Yelu,et al."Spectral Invariant Provides a Practical Modeling Approach for Future Biophysical Variable Estimations".REMOTE SENSING 10.10(2018):17. |
入库方式: OAI收割
来源:成都山地灾害与环境研究所
浏览0
下载0
收藏0
其他版本
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。