Solving second-order decoupled elastic wave equation using low-rank decomposition and low-rank finite differences
文献类型:期刊论文
作者 | Yuan YuXin1,2,3,4; Hu Ting1,2,3,4; Wang ZhiYang1,2,3; Guo Peng5; Liu Hong1,2,3,4 |
刊名 | CHINESE JOURNAL OF GEOPHYSICS-CHINESE EDITION
![]() |
出版日期 | 2018-08-01 |
卷号 | 61期号:8页码:3324-3333 |
关键词 | Wavefield extrapolation Space-wavenumber mixed-domain symbol Staggered-grid low-rank decomposition Staggered-grid low-rank finite difference |
ISSN号 | 0001-5733 |
DOI | 10.6038/cjg2018L0257 |
英文摘要 | Seismic wavefield extrapolation is an important part of seismic imaging and full waveform inversion. Theoretically, the problem of wave extrapolation in the time domain can be reduced into analyzing numerical approximation to the space-wavenumber mixed-domain symbol. In this paper, we propose a novel method to solve decoupled second-order elastic wave equation. We successively employ backward and forward first-order pseudo differential operators to derive a wave extrapolation operator for second-order decoupled elastic wave propagation. The mixed-domain symbol incorporates the accurate spectral evaluation of spatial derivatives and the time-marching adjustment to ensure that the solution is exact for homogeneous wave propagation for time steps of an arbitrarily large size. Considering its straightforward implementation in heterogeneous media, it needs to do N times inverse fast Fourier transform (FFT) every time step, here N is the total size of the model grid. In order to reduce computational cost, we propose a staggered-grid low-rank(SGL) method, which can be applied to large time step wave extrapolation. We also propose a staggered-grid low-rank finite-difference (SGLFD) method by combining the staggered low-rank method and finite-difference to reduce numerical dispersion. The 2D numerical experiments demonstrate that these two methods can improve the accuracy of modeling results compared with the ordinary staggered-grid finite difference method. |
WOS关键词 | SPACE METHOD ; PROPAGATION ; EXTRAPOLATION ; SCATTERING |
WOS研究方向 | Geochemistry & Geophysics |
语种 | 英语 |
WOS记录号 | WOS:000442058500019 |
出版者 | SCIENCE PRESS |
源URL | [http://ir.iggcas.ac.cn/handle/132A11/89173] ![]() |
专题 | 地质与地球物理研究所_中国科学院油气资源研究重点实验室 |
通讯作者 | Liu Hong |
作者单位 | 1.Chinese Acad Sci, Inst Geol & Geophys, Beijing 100029, Peoples R China 2.Chinese Acad Sci, Inst Earth Sci, Beijing 100029, Peoples R China 3.Chinese Acad Sci, Inst Geol & Geophys, Key Lab Petr Resources Res, Beijing 100029, Peoples R China 4.Univ Chinese Acad Sci, Beijing 100049, Peoples R China 5.China Earthquake Adm, Lanzhou Inst Seismol, Lanzhou 730000, Gansu, Peoples R China |
推荐引用方式 GB/T 7714 | Yuan YuXin,Hu Ting,Wang ZhiYang,et al. Solving second-order decoupled elastic wave equation using low-rank decomposition and low-rank finite differences[J]. CHINESE JOURNAL OF GEOPHYSICS-CHINESE EDITION,2018,61(8):3324-3333. |
APA | Yuan YuXin,Hu Ting,Wang ZhiYang,Guo Peng,&Liu Hong.(2018).Solving second-order decoupled elastic wave equation using low-rank decomposition and low-rank finite differences.CHINESE JOURNAL OF GEOPHYSICS-CHINESE EDITION,61(8),3324-3333. |
MLA | Yuan YuXin,et al."Solving second-order decoupled elastic wave equation using low-rank decomposition and low-rank finite differences".CHINESE JOURNAL OF GEOPHYSICS-CHINESE EDITION 61.8(2018):3324-3333. |
入库方式: OAI收割
来源:地质与地球物理研究所
浏览0
下载0
收藏0
其他版本
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。