中国科学院机构知识库网格
Chinese Academy of Sciences Institutional Repositories Grid
One-parameter l1 Prior in Variational Bayesian Super resolution

文献类型:会议论文

作者Min Lei [1,2,3,4], Yang Ping [1,3], Liu Wenjin [1,3], Luan Yinsen [1,3], Xu Bing [1,3], Liu Yong [2]
出版日期2017
关键词super resolution prior model variational Bayesian Kullback-Leibler distance
卷号10462
页码104622Z
英文摘要In this paper, we address the multiframe super resolution problem from a set of degraded, under-sampled, shifted and rotated low resolution images to obtain a high resolution image using the variational Bayesian methods. In the Bayesian framework a prior model on the high resolution image need to be specified, its aim is to summarize our knowledge of the image and to constraint the ill-posed image reconstruction problem. Appropriate prior model selection according to the super resolution scenario is a critical issue. Here we propose the one-parameter l1 prior. Experimental results demonstrate that the proposed method is very effective and compared favorably to state-of-the-art super resolution algorithms.
会议录0277-786X
语种英语
源URL[http://ir.ioe.ac.cn/handle/181551/9023]  
专题光电技术研究所_自适应光学技术研究室(八室)
作者单位1.University of Chinese Academy of Sciences, Beijing 100039, China
2.The Institute of Optics and Electronics the Chinese Academy of Sciences, Chengdu 610209, China
3.School of Optoelectronic Information, University of Electronic Science and Technology of China, Chengdu 610054, China
4.Key Laboratory on Adaptive Optics, Chinese Academy of Sciences , Chengdu, China 610209
推荐引用方式
GB/T 7714
Min Lei [1,2,3,4], Yang Ping [1,3], Liu Wenjin [1,3], Luan Yinsen [1,3], Xu Bing [1,3], Liu Yong [2]. One-parameter l1 Prior in Variational Bayesian Super resolution[C]. 见:.

入库方式: OAI收割

来源:光电技术研究所

浏览0
下载0
收藏0
其他版本

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。