Filtration efficiency and loading characteristics of PM2.5 through composite filter media consisting of commercial HVAC electret media and nanofiber layer
文献类型:期刊论文
作者 | Tang, Min; Chen, Sheng-Chieh; Chang, De-Qiang; Xie, Xiaofeng3; Sun, Jing3; Pui, David Y. H. |
刊名 | SEPARATION AND PURIFICATION TECHNOLOGY
![]() |
出版日期 | 2018 |
卷号 | 198页码:137 |
关键词 | Composite filter media Electret media Nanofiber media PM2.5 loading Figure of merit |
ISSN号 | 1383-5866 |
DOI | 10.1016/j.seppur.2017.03.040 |
英文摘要 | Pleated electret HVAC filters are often used in residences and commercial buildings to mitigate the particles that originate both indoors and outdoors. However, there are two concerns on the performance of electret media: 1. Low efficiency for particles in diameter of 10-30 nm at initial filtration condition, which represent the MPPS (most penetrating particle size), and 2. Significant efficiency reduction during the loading process due to the shielding of fiber charge. In this study, a composite filter media composed of a main layer of HVAC electret media on the top and a thin layer of nanofiber at the bottom was prepared and tested for its PM2.5 removal. In the initial efficiency tests, monodisperse nanoparticles ranging 8-500 nm were used to challenge the media, It was found that the nanofiber layer can enhance the efficiency for the MPPS (10-30 nm) of electret media significantly. In the loading performance, polydisperse NaCl particles which mimicked the size distribution of typical atmospheric PM2.5 were used to challenge the media. It was found the total efficiency reduction was less than 10% for particles with sizes 50-500 nm. This reduction due to the shielding of fiber charge was much less than the electret layer (>40%) without adding nanofibers. The observation of a decent performance over the loading process was expected since the composite media made full use of both the mechanical forces and electrostatic effects. Surprisingly, the overall loading FOM (figure of merit) of the composite media was close to that of electret media, indicating that there was only a minor tradeoff of pressure drop increase when adding the nanofiber layer. In conclusion, this type of combination provided a unique structure to take advantage of electret media and a nanofiber layer for PM2.5 removal in the application of pleated HVAC filters. (C) 2017 Elsevier B.V. All rights reserved. |
学科主题 | Engineering, Chemical |
WOS记录号 | WOS:000430776800019 |
出版者 | ELSEVIER SCIENCE BV |
资助机构 | This work was supported by the United States NSF Grant (Award ID: 1236107) on "GOALIE: Unipolar Diffusion Charging of Spherical and Agglomerated Nanoparticles and its Application toward Surface-Area Measurement." This work was also supported by Oversea Study of Guangzhou Elite Project (GEP), the National Key Research and Development Program of China (2016YFA0203000), and the Key Project of International Cooperation of the Academy of Sciences (GJHZ1656). The authors thank the support of members of the Center for Filtration Research: 3M Corporation ; A.O. Smith Corporation ; BASF Corporation ; Boeing Commercial Airplanes ; Cummins Filtration Inc. ; Donaldson Company, Inc. ; Entegris, Inc. ; Ford Research & Innovation Center ; W.L. Gore & Associates, Inc. ; MSP Corporation ; Yancheng Science Park ; Samsung Electronics Co., Ltd. ; Xinxiang Shengda Filtration Technique Co., Ltd. ; Shigematsu Works Co., Ltd. ; TSI Inc. ; Guangxi Watyuan Filtration System Co., Ltd. ; and the affiliate member National Institute for Occupational Safety and Health (NIOSH). ; This work was supported by the United States NSF Grant (Award ID: 1236107) on "GOALIE: Unipolar Diffusion Charging of Spherical and Agglomerated Nanoparticles and its Application toward Surface-Area Measurement." This work was also supported by Oversea Study of Guangzhou Elite Project (GEP), the National Key Research and Development Program of China (2016YFA0203000), and the Key Project of International Cooperation of the Academy of Sciences (GJHZ1656). The authors thank the support of members of the Center for Filtration Research: 3M Corporation ; A.O. Smith Corporation ; BASF Corporation ; Boeing Commercial Airplanes ; Cummins Filtration Inc. ; Donaldson Company, Inc. ; Entegris, Inc. ; Ford Research & Innovation Center ; W.L. Gore & Associates, Inc. ; MSP Corporation ; Yancheng Science Park ; Samsung Electronics Co., Ltd. ; Xinxiang Shengda Filtration Technique Co., Ltd. ; Shigematsu Works Co., Ltd. ; TSI Inc. ; Guangxi Watyuan Filtration System Co., Ltd. ; and the affiliate member National Institute for Occupational Safety and Health (NIOSH). |
源URL | [http://ir.sic.ac.cn/handle/331005/24869] ![]() |
专题 | 中国科学院上海硅酸盐研究所 |
作者单位 | 1.South China Univ Technol, State Key Lab Pulp & Papermaking Engn, 381 Wushan Rd, Guangzhou 510640, Guangdong, Peoples R China 2.Tang, Min; Chen, Sheng-Chieh; Chang, De-Qiang; Pui, David Y. H.] Univ Minnesota, Particle Technol Lab, Mech Engn, 111 Church St SE, Minneapolis, MN 55455 USA 3.Northeastern Univ, Coll Resources & Civil Engn, Filter Test Ctr, 3-11 Wenhua Rd, Shenyang 110819, Liaoning, Peoples R China 4.Chinese Acad Sci, Shanghai Inst Ceram, 1295 Dingxi Rd, Shanghai 200050, Peoples R China |
推荐引用方式 GB/T 7714 | Tang, Min,Chen, Sheng-Chieh,Chang, De-Qiang,et al. Filtration efficiency and loading characteristics of PM2.5 through composite filter media consisting of commercial HVAC electret media and nanofiber layer[J]. SEPARATION AND PURIFICATION TECHNOLOGY,2018,198:137, 145. |
APA | Tang, Min,Chen, Sheng-Chieh,Chang, De-Qiang,Xie, Xiaofeng,Sun, Jing,&Pui, David Y. H..(2018).Filtration efficiency and loading characteristics of PM2.5 through composite filter media consisting of commercial HVAC electret media and nanofiber layer.SEPARATION AND PURIFICATION TECHNOLOGY,198,137. |
MLA | Tang, Min,et al."Filtration efficiency and loading characteristics of PM2.5 through composite filter media consisting of commercial HVAC electret media and nanofiber layer".SEPARATION AND PURIFICATION TECHNOLOGY 198(2018):137. |
入库方式: OAI收割
来源:上海硅酸盐研究所
浏览0
下载0
收藏0
其他版本
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。