中国科学院机构知识库网格
Chinese Academy of Sciences Institutional Repositories Grid
Core-shell LaPO4/g-C3N4nanowires for highly active and selective CO2reduction

文献类型:期刊论文

作者Li, Mengli2; Zhang, Lingxia1; Fan, Xiangqian1; Wu, Meiying1; Wang, Min1; Cheng, Ruolin1; Zhang, Linlin1; Yao, Heliang1; Shi, Jianlin1,3
刊名Applied Catalysis B: Environmental
出版日期2017
卷号201页码:629-635
ISSN号09263373
DOI10.1016/j.apcatb.2016.09.004
英文摘要We have synthesized a series of LaPO4/g-C3N4core-shell nanowires via an in-situ hydrothermal growth of LaPO4nanorods in tubular g-C3N4and investigated their photocatalytic activity in CO2reduction. It was found that in the synthesized core-shell structure, the outer g-C3N4nano-shells coated on the LaPO4nanorod cores resulted in the enhanced light absorption and charge carrier separation/transfer ability, thus improved the room temperature photocatalytic performance of the nanocomposites in CO2photocatalytic reduction compared with the g-C3N4and LaPO4individuals. A maximum CO yield of 0.433 μmol has been obtained from CO2reduction within 1 h irradiation on 30 mg nanocomposite photocatalyst under the absence of any noble metal. Finally, a possible mechanism, which is featured with LaPO4activation due to significantly promoted separation/transfer of photo-generated charge carriers, was proposed. The encouraging performance in CO2photoreduction demonstrates that this novel nanocomposite will be a prospective material in environmental protection and energy conversion. © 2016
源URL[http://ir.sic.ac.cn/handle/331005/25805]  
专题中国科学院上海硅酸盐研究所
作者单位1.State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, 1295 Ding-Xi Road, Shanghai; 200050, China;
2.School of Biology and Chemical Engineering, Jiaxing University, Jiaxing; Zhejiang; 314001, China;
3.Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), China
推荐引用方式
GB/T 7714
Li, Mengli,Zhang, Lingxia,Fan, Xiangqian,et al. Core-shell LaPO4/g-C3N4nanowires for highly active and selective CO2reduction[J]. Applied Catalysis B: Environmental,2017,201:629-635.
APA Li, Mengli.,Zhang, Lingxia.,Fan, Xiangqian.,Wu, Meiying.,Wang, Min.,...&Shi, Jianlin.(2017).Core-shell LaPO4/g-C3N4nanowires for highly active and selective CO2reduction.Applied Catalysis B: Environmental,201,629-635.
MLA Li, Mengli,et al."Core-shell LaPO4/g-C3N4nanowires for highly active and selective CO2reduction".Applied Catalysis B: Environmental 201(2017):629-635.

入库方式: OAI收割

来源:上海硅酸盐研究所

浏览0
下载0
收藏0
其他版本

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。