热门
An improved PSO-based ANN with simulated annealing technique
文献类型:期刊论文
作者 | Yi, D; Ge, XR |
刊名 | NEUROCOMPUTING
![]() |
出版日期 | 2005 |
卷号 | 63期号:-页码:527-533 |
关键词 | Artificial Neural Networks Particle Swarm Optimization Simulated Annealing |
ISSN号 | 0925-2312 |
DOI | 10.1016/j.neucom.2004.07.002 |
英文摘要 | This paper presents a modified particle swarm optimization (PSO) with simulated annealing (SA) technique. An improved PSO-based artificial neural network (ANN) is developed. The results show that the proposed SAPSO-based ANN has a better ability to escape from a local optimum and is more effective than the conventional PSO-based ANN. (C) 2004 Elsevier B.V. All rights reserved. |
WOS研究方向 | Computer Science |
语种 | 英语 |
WOS记录号 | WOS:000226705700026 |
出版者 | ELSEVIER SCIENCE BV |
源URL | [http://119.78.100.198/handle/2S6PX9GI/3124] ![]() |
专题 | 岩土力学所知识全产出_期刊论文 |
作者单位 | Shanghai Jiao Tong Univ, Sch Naval Architecture Ocean & Civil Engn; Chinese Acad Sci, Inst Rock & Soil Mech |
推荐引用方式 GB/T 7714 | Yi, D,Ge, XR. An improved PSO-based ANN with simulated annealing technique[J]. NEUROCOMPUTING,2005,63(-):527-533. |
APA | Yi, D,&Ge, XR.(2005).An improved PSO-based ANN with simulated annealing technique.NEUROCOMPUTING,63(-),527-533. |
MLA | Yi, D,et al."An improved PSO-based ANN with simulated annealing technique".NEUROCOMPUTING 63.-(2005):527-533. |
入库方式: OAI收割
来源:武汉岩土力学研究所
浏览0
下载0
收藏0
其他版本
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。