中国科学院机构知识库网格
Chinese Academy of Sciences Institutional Repositories Grid
热门
An improved PSO-based ANN with simulated annealing technique

文献类型:期刊论文

作者Yi, D; Ge, XR
刊名NEUROCOMPUTING
出版日期2005
卷号63期号:-页码:527-533
关键词Artificial Neural Networks Particle Swarm Optimization Simulated Annealing
ISSN号0925-2312
DOI10.1016/j.neucom.2004.07.002
英文摘要

This paper presents a modified particle swarm optimization (PSO) with simulated annealing (SA) technique. An improved PSO-based artificial neural network (ANN) is developed. The results show that the proposed SAPSO-based ANN has a better ability to escape from a local optimum and is more effective than the conventional PSO-based ANN. (C) 2004 Elsevier B.V. All rights reserved.

WOS研究方向Computer Science
语种英语
WOS记录号WOS:000226705700026
出版者ELSEVIER SCIENCE BV
源URL[http://119.78.100.198/handle/2S6PX9GI/3124]  
专题岩土力学所知识全产出_期刊论文
作者单位Shanghai Jiao Tong Univ, Sch Naval Architecture Ocean & Civil Engn; Chinese Acad Sci, Inst Rock & Soil Mech
推荐引用方式
GB/T 7714
Yi, D,Ge, XR. An improved PSO-based ANN with simulated annealing technique[J]. NEUROCOMPUTING,2005,63(-):527-533.
APA Yi, D,&Ge, XR.(2005).An improved PSO-based ANN with simulated annealing technique.NEUROCOMPUTING,63(-),527-533.
MLA Yi, D,et al."An improved PSO-based ANN with simulated annealing technique".NEUROCOMPUTING 63.-(2005):527-533.

入库方式: OAI收割

来源:武汉岩土力学研究所

浏览0
下载0
收藏0
其他版本

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。