Why coal permeability changes under free swellings: New insights
文献类型:期刊论文
作者 | Peng, Yan1; Liu, Jishan1,2; Wei, Mingyao2; Pan, Zhejun3; Connell, Luke D.3 |
刊名 | INTERNATIONAL JOURNAL OF COAL GEOLOGY
![]() |
出版日期 | 2014 |
卷号 | 133页码:35-46 |
关键词 | Coal permeability Local equilibrium Local strain Global strain Matrix diffusivity |
ISSN号 | 0166-5162 |
DOI | 10.1016/j.coal.2014.08.011 |
英文摘要 | Coal permeability models are derived normally under three common assumptions: (1) uniaxial strain; (2) invariant total stress; and (3) local equilibrium. Experimental measurements are normally conducted under constant effective stress or free swelling conditions. The inconsistency between model assumptions and the experimental conditions determines that these coal permeability models may not be appropriate to use for the analysis of the experimental data. Based on the theory of poroelasticity, coal permeability is determined by the effective stress only. Therefore, there would be no permeability change when the effective stress remains constant. This theoretical conclusion contradicts with the "V" shape profile of coal permeability as widely observed through experiments. This study has solved the mystery of this "abnormal" behavior through a novel dual-permeability model. The model is formulated based on our previous concepts of local swelling, global swelling and their evolutions from the initial equilibrium state to the final equilibrium state. In the formulation, we define four strains: coal global strain, fracture local strain, matrix global strain, and pore local stain. Coal permeability is defined as a function of these strains. Their evolutions are determined by the effective stress transfer between the matrix system and the fracture system, and regulated by the gas diffusion process from the fracture system to the matrix system. We use the strain evolutions to define how coal permeability changes with time or gas pressure in the matrix system. We applied the new model to generate a series of coal permeability profiles from the "V" shape as observed in experiments to the "Langmuir" type. These profiles are regulated primarily by the matrix diffusivity. When the diffusivity is low, it displays the "V" shape; when the diffusivity is high, it displays the "Langmuir" shape. (C) 2014 Elsevier B.V. All rights reserved. |
WOS研究方向 | Energy & Fuels ; Geology |
语种 | 英语 |
WOS记录号 | WOS:000347593600004 |
出版者 | ELSEVIER SCIENCE BV |
源URL | [http://119.78.100.198/handle/2S6PX9GI/3652] ![]() |
专题 | 岩土力学所知识全产出_期刊论文 国家重点实验室知识产出_期刊论文 |
作者单位 | 1.Univ Western Australia, Sch Mech & Chem Engn, Crawley; 2.Chinese Acad Sci, Inst Rock & Soil Mech, State Key Lab Geomech & Geotech Engn ; 3.CSIRO Earth Sci & Resource Engn |
推荐引用方式 GB/T 7714 | Peng, Yan,Liu, Jishan,Wei, Mingyao,et al. Why coal permeability changes under free swellings: New insights[J]. INTERNATIONAL JOURNAL OF COAL GEOLOGY,2014,133:35-46. |
APA | Peng, Yan,Liu, Jishan,Wei, Mingyao,Pan, Zhejun,&Connell, Luke D..(2014).Why coal permeability changes under free swellings: New insights.INTERNATIONAL JOURNAL OF COAL GEOLOGY,133,35-46. |
MLA | Peng, Yan,et al."Why coal permeability changes under free swellings: New insights".INTERNATIONAL JOURNAL OF COAL GEOLOGY 133(2014):35-46. |
入库方式: OAI收割
来源:武汉岩土力学研究所
浏览0
下载0
收藏0
其他版本
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。