中国科学院机构知识库网格
Chinese Academy of Sciences Institutional Repositories Grid
Feasibility of using visible and near-infrared reflectance spectroscopy to monitor heavy metal contaminants in urban lake sediment

文献类型:期刊论文

作者Jiang, Qinghu1; Liu, Minxia1,2; Wang, Jun1; Liu, Feng1
刊名CATENA
出版日期2018-03-01
卷号162页码:72-79
关键词Heavy metal Urban lake sediments Visible and near-infrared reflectance spectroscopy Spectral feature selection Predictive mechanism
ISSN号0341-8162
DOI10.1016/j.catena.2017.11.020
英文摘要Contamination of urban lake sediments by heavy metals is a major threat to environmental safety and human health due to its high toxicity and persistence. This paper aims to examine the feasibility of using visible and near-infrared reflectance spectroscopy (VNIRS) to rapidly quantify heavy metals (i.e., As, Cd, Cr, Cu, Hg, Ni, Pb and Zn) in urban lake sediments. Lake sediment samples (n = 103) were collected from the East Lake in Wuhan, China. Partial least squares regression (PLSR) calibration models were developed for the heavy metals estimation. Genetic algorithm (GA) and competitive adaptive reweighted sampling (CARS) were compared to test whether spectral feature selection could improve heavy metals predications or not. Correlation analysis was carried out to gain better understanding of the predictive mechanism for the assessment of the heavy metals in sediments using VNIRS. PLSR calibration models showed that Cd, Hg, Ni and Pb had acceptable model prediction (with r(cv)(2) values range from 0.32 to 0.40), while model results for As, Cr, Cu and Zn were unsatisfactory (with r(cv)(2) values of 0.01-0.06). These different accuracies were likely caused by the different relationships between heavy metals and spectrally-active constitutes (e.g., total organic carbon, TOC). When compared with full-spectrum PLSR models, GA-PLSR and CARS-PLSR models slightly increased the accuracies by remove uninformative spectral variables. Given these undesired practices, this study demonstrated that VNIRS should not be recommended for heavy metals estimation in urban lake sediment. The inherent correlations between heavy metals and spectrally-active constitutes (e.g., TOC) rather than modeling method (e.g., feature selection algorithms) were critical for the limited heavy metals estimation using VNIRS.
资助项目Chinese National Key Development Program for Basic Research[2014CB954004] ; Natural Science Foundation of China[31600377] ; Chinese Academy of Sciences
WOS研究方向Geology ; Agriculture ; Water Resources
语种英语
WOS记录号WOS:000423004800008
出版者ELSEVIER SCIENCE BV
源URL[http://202.127.146.157/handle/2RYDP1HH/4516]  
专题中国科学院武汉植物园
通讯作者Liu, Feng
作者单位1.Chinese Acad Sci, Wuhan Bot Garden, Key Lab Aquat Bot & Watershed Ecol, Wuhan 430074, Hubei, Peoples R China
2.Shanxi Agr Univ, Coll Forestry, Taigu 030801, Peoples R China
推荐引用方式
GB/T 7714
Jiang, Qinghu,Liu, Minxia,Wang, Jun,et al. Feasibility of using visible and near-infrared reflectance spectroscopy to monitor heavy metal contaminants in urban lake sediment[J]. CATENA,2018,162:72-79.
APA Jiang, Qinghu,Liu, Minxia,Wang, Jun,&Liu, Feng.(2018).Feasibility of using visible and near-infrared reflectance spectroscopy to monitor heavy metal contaminants in urban lake sediment.CATENA,162,72-79.
MLA Jiang, Qinghu,et al."Feasibility of using visible and near-infrared reflectance spectroscopy to monitor heavy metal contaminants in urban lake sediment".CATENA 162(2018):72-79.

入库方式: OAI收割

来源:武汉植物园

浏览0
下载0
收藏0
其他版本

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。