Tent spaces and Littlewood-Paley g-functions associated with Bergman spaces in the unit ball of C-n
文献类型:期刊论文
作者 | Chen, Zeqian2; Ouyang, Wei1 |
刊名 | COMPLEX VARIABLES AND ELLIPTIC EQUATIONS
![]() |
出版日期 | 2018 |
卷号 | 63期号:3页码:406-419 |
关键词 | Bergman space Bergman metric tent space Littlewood-Paley g-function |
ISSN号 | 1747-6933 |
DOI | 10.1080/17476933.2017.1316979 |
英文摘要 | In this paper, a family of holomorphic spaces of tent type in the unit ball of C-n is introduced, which is closely related to maximal and area integral functions in terms of the Bergman metric. It is shown that these spaces coincide with Bergman spaces. Furthermore, Littlewood-Paley type g-functions for the Bergman spaces are introduced in terms of the radial derivative, the complex gradient and the invariant gradient. The corresponding characterizations for Bergman spaces are obtained as well. As an application, we obtain new maximal and area integral characterizations for Besov spaces. |
资助项目 | NSFC[11431011] |
WOS研究方向 | Mathematics |
语种 | 英语 |
WOS记录号 | WOS:000426903500008 |
出版者 | TAYLOR & FRANCIS LTD |
源URL | [http://202.127.146.157/handle/2RYDP1HH/4759] ![]() |
专题 | 中国科学院武汉植物园 |
通讯作者 | Ouyang, Wei |
作者单位 | 1.Chinese Acad Sci, Inst Geodesy & Geophys, Ctr Computat & Explorat Geophys, State Key Lab Geodesy & Earths Dynam, Wuhan, Hubei, Peoples R China 2.Chinese Acad Sci, Wuhan Inst Phys & Math, Wuhan, Hubei, Peoples R China |
推荐引用方式 GB/T 7714 | Chen, Zeqian,Ouyang, Wei. Tent spaces and Littlewood-Paley g-functions associated with Bergman spaces in the unit ball of C-n[J]. COMPLEX VARIABLES AND ELLIPTIC EQUATIONS,2018,63(3):406-419. |
APA | Chen, Zeqian,&Ouyang, Wei.(2018).Tent spaces and Littlewood-Paley g-functions associated with Bergman spaces in the unit ball of C-n.COMPLEX VARIABLES AND ELLIPTIC EQUATIONS,63(3),406-419. |
MLA | Chen, Zeqian,et al."Tent spaces and Littlewood-Paley g-functions associated with Bergman spaces in the unit ball of C-n".COMPLEX VARIABLES AND ELLIPTIC EQUATIONS 63.3(2018):406-419. |
入库方式: OAI收割
来源:武汉植物园
浏览0
下载0
收藏0
其他版本
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。