中国科学院机构知识库网格
Chinese Academy of Sciences Institutional Repositories Grid
ON RANK-2 TODA SYSTEMS WITH ARBITRARY SINGULARITIES: LOCAL MASS AND NEW ESTIMATES

文献类型:期刊论文

作者Zhang, Lei4; Lin, Chang-Shou1; Wei, Jun-cheng2; Yang, Wen3
刊名ANALYSIS & PDE
出版日期2018
卷号11期号:4页码:873-898
关键词SU(n+1)-Toda system asymptotic analysis a priori estimate classification theorem topological degree blowup solutions Riemann-Hurwitz theorem
ISSN号1948-206X
DOI10.2140/apde.2018.11.873
英文摘要For all rank-2 Toda systems with an arbitrary singular source, we use a unified approach to prove: (1) The pair of local masses (sigma(1), sigma(2)) at each blowup point has the expression sigma(i) = 2(N-i1 mu(1) + N-i2 mu(2) + N-i3), where N-ij is an element of Z, i D 1, 2, j D 1, 2, 3. (2) At each vortex point p(t) if (alpha(1)(t), alpha(2)(t)) are integers and rho(i) is not an element of 4 pi N, then all the solutions of Toda systems are uniformly bounded. (3) If the blowup point q is a vortex point p(t) and alpha(1)(t), alpha(2)(t) and 1 are linearly independent over Q, then u(k)(x) + 2log vertical bar x - p(t)vertical bar <= C. The Harnack-type inequalities of 3 are important for studying the bubbling behavior near each blowup point.
WOS研究方向Mathematics
语种英语
WOS记录号WOS:000429121100003
出版者MATHEMATICAL SCIENCE PUBL
源URL[http://202.127.146.157/handle/2RYDP1HH/4922]  
专题中国科学院武汉植物园
通讯作者Lin, Chang-Shou
作者单位1.Natl Taiwan Univ, Taida Inst Math Sci, Dept Math, Taipei, Taiwan
2.Univ British Columbia, Dept Math, Vancouver, BC, Canada
3.Chinese Acad Sci, Wuhan Inst Phys & Math, Wuhan, Hubei, Peoples R China
4.Univ Florida, Dept Math, Gainesville, FL 32611 USA
推荐引用方式
GB/T 7714
Zhang, Lei,Lin, Chang-Shou,Wei, Jun-cheng,et al. ON RANK-2 TODA SYSTEMS WITH ARBITRARY SINGULARITIES: LOCAL MASS AND NEW ESTIMATES[J]. ANALYSIS & PDE,2018,11(4):873-898.
APA Zhang, Lei,Lin, Chang-Shou,Wei, Jun-cheng,&Yang, Wen.(2018).ON RANK-2 TODA SYSTEMS WITH ARBITRARY SINGULARITIES: LOCAL MASS AND NEW ESTIMATES.ANALYSIS & PDE,11(4),873-898.
MLA Zhang, Lei,et al."ON RANK-2 TODA SYSTEMS WITH ARBITRARY SINGULARITIES: LOCAL MASS AND NEW ESTIMATES".ANALYSIS & PDE 11.4(2018):873-898.

入库方式: OAI收割

来源:武汉植物园

浏览0
下载0
收藏0
其他版本

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。