中国科学院机构知识库网格
Chinese Academy of Sciences Institutional Repositories Grid
On hybrid electroosmotic kinetics for field-effect-reconfigurable nanoparticle trapping in a four-terminal spiral microelectrode array

文献类型:期刊论文

作者Ren YK; Song CL; Liu WY; Jiang TY; Song JN; Wu QS; Jiang HY
刊名ELECTROPHORESIS
出版日期2019-03-01
卷号40期号:6页码:979-992
关键词AC field-effect flow control hybrid electroosmotic kinetics induced-charge electrokinetic microfluidics nanoparticle concentration
ISSN号0173-0835
DOI10.1002/elps.201800325
英文摘要Induced-charge electroosmosis (ICEO) has attracted tremendous popularity for driving fluid motion from the microfluidic community since the last decade, while less attention has been paid to ICEO-based nanoparticle manipulation. We propose herein a unique concept of hybrid electroosmotic kinetics (HEK) in terms of bi-phase ICEO (BICEO) actuated in a four-terminal spiral electrode array, for effective electrokinetic enrichment of fluorescent polystyrene nanoparticles on ideally polarizable metal strips. First, by alternating the applied AC voltage waves between consecutive discrete terminals, the flow stagnation lines where the sample nanoparticles aggregate can be switched in time between two different distribution modes. Second, we innovatively introduce the idea of AC field-effect flow control on BICEO; by altering the combination of gating voltage sequence, not only the number of circulative particle trapping lines is doubled, but the collecting locations can be flexibly reconfigured as well. Third, hydrodynamic streaming of DC-biased BICEO is tested in our device design, wherein the global linear electroosmosis dominates BICEO contributed from both AC and DC components, resulting in a reduction of particle enrichment area, while with a sharp increase in sample transport speed inside the bulk phase. The flow field associated with HEK is predicted using a linear asymptotic analysis under Debye-Huckel limit, with the simulation results in qualitative agreement with in-lab observations of nanoparticle trapping by exploiting a series of improved ICEO techniques. This work provides an affordable and field-deployable platform for real-time nanoparticle trapping in the context of dilute electrolyte.
分类号二类
WOS关键词INDUCED-CHARGE ELECTROOSMOSIS ; FLOW ; PARTICLES ; MANIPULATION ; DRIVEN ; DEVICE
WOS研究方向Biochemical Research Methods ; Chemistry, Analytical
语种英语
WOS记录号WOS:000461091000017
资助机构National Natural Science Foundation of China [11672095, 11702035] ; Opening fund of State Key Laboratory of Nonlinear Mechanics ; Chang'an University Fundamental Research Funds for the Central Universities [310832171008, 300102328201, 300102328501] ; Shaanxi kefa Key Industrial Innovation Chain (group)-Industrial Field [9, 2018ZDCXL-GY-05-04, 2018ZDCXL-GY-05-07-02] ; Self-Planned Task of State Key Laboratory of Robotics and System (HIT) [SKLRS201803B]
其他责任者Ren, YK ; Jiang, HY ; Liu, WY
源URL[http://dspace.imech.ac.cn/handle/311007/78436]  
专题力学研究所_非线性力学国家重点实验室
作者单位1.{Ren, Yukun、Song, Chunlei、Jiang, Tianyi、Jiang, Hongyuan} Harbin Inst Technol, State Key Lab Robot & Syst, West Da Zhi St 92, Harbin 150001, Heilongjiang, Peoples R China
2.{Liu, Weiyu、Song, Jingni、Wu, Qisheng} Changan Univ, Sch Elect & Control Engn, Xian, Shaanxi, Peoples R China
3.{Liu, Weiyu、Song, Jingni、Wu, Qisheng} Changan Univ, Sch Highway, Xian, Shaanxi, Peoples R China
4.{Ren, Yukun} Chinese Acad Sci, Inst Mech, State Key Lab Nonlinear Mech LNM, Beijing, Peoples R China
推荐引用方式
GB/T 7714
Ren YK,Song CL,Liu WY,et al. On hybrid electroosmotic kinetics for field-effect-reconfigurable nanoparticle trapping in a four-terminal spiral microelectrode array[J]. ELECTROPHORESIS,2019,40(6):979-992.
APA Ren YK.,Song CL.,Liu WY.,Jiang TY.,Song JN.,...&Jiang HY.(2019).On hybrid electroosmotic kinetics for field-effect-reconfigurable nanoparticle trapping in a four-terminal spiral microelectrode array.ELECTROPHORESIS,40(6),979-992.
MLA Ren YK,et al."On hybrid electroosmotic kinetics for field-effect-reconfigurable nanoparticle trapping in a four-terminal spiral microelectrode array".ELECTROPHORESIS 40.6(2019):979-992.

入库方式: OAI收割

来源:力学研究所

浏览0
下载0
收藏0
其他版本

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。