Metal-carbenicillin framework-based nanoantibiotics with enhanced penetration and highly efficient inhibition of mrsa
文献类型:期刊论文
作者 | Duan, Fei1; Feng, Xiaochen1; Jin, Yan1; Liu, Dawei1; Yang, Xinjian1; Zhou, Guoqiang1; Liu, Dandan1; Li, Zhenhua1; Liang, Xing-Jie2; Zhang, Jinchao1 |
刊名 | Biomaterials
![]() |
出版日期 | 2017-11-01 |
卷号 | 144页码:155-165 |
关键词 | Metal-carbenicillin frameworks Co-delivery system Ph-responsive Enhance biofilm penetration Mrsa |
ISSN号 | 0142-9612 |
DOI | 10.1016/j.biomaterials.2017.08.024 |
通讯作者 | Li, zhenhua(zhenhuali1013@163.com) ; Liang, xing-jie(liangxj@nanoctr.cn) ; Zhang, jinchao(jczhang6970@163.com) |
英文摘要 | The development of effective therapies to control methicillin-resistant staphylococcus aureus (mrsa) infections is challenging because antibiotics can be degraded by the production of certain enzymes, for example, beta-lactamases. additionally, the antibiotics themselves fail to penetrate the full depth of biofilms formed from extracellular polymers. nanoparticle-based carriers can deliver antibiotics with better biofilm penetration, thus combating bacterial resistance. in this study, we describe a general approach for the construction of beta-lactam antibiotics and beta-lactamase inhibitors co-delivery of nanoantibiotics based on metal-carbenicillin framework-coated mesoporous silica nanoparticles (msn) to overcome mrsa. carbenicillin, a beta-lactam antibiotic, was used as an organic ligand that coordinates with fe3+ to form a metal-carbenicillin framework to block the pores of the msn. furthermore, these beta-lactamase inhibitor loaded nanoantibiotics were stable under physiological conditions and could synchronously release antibiotic molecules and inhibitors at the bacterial infection site to achieve a better elimination of antibiotic resistant bacterial strains and biofilms. we confirmed that these beta-lactamase inhibitor-loaded nanoantibiotics had better penetration depth into biofilms and an obvious effect on the inhibition of mrsa both in vitro and in vivo. (c) 2017 published by elsevier ltd. |
WOS关键词 | MESOPOROUS SILICA NANOPARTICLES ; BETA-LACTAM ANTIBIOTICS ; PATHOGENIC BACTERIA ; INFECTIOUS-DISEASES ; QUANTUM DOTS ; BIOFILMS ; DELIVERY ; RESISTANT ; PERMEABILITY ; DISCOVERY |
WOS研究方向 | Engineering ; Materials Science |
WOS类目 | Engineering, Biomedical ; Materials Science, Biomaterials |
语种 | 英语 |
WOS记录号 | WOS:000411420000014 |
出版者 | ELSEVIER SCI LTD |
URI标识 | http://www.irgrid.ac.cn/handle/1471x/2177069 |
专题 | 高能物理研究所 |
通讯作者 | Li, Zhenhua; Liang, Xing-Jie; Zhang, Jinchao |
作者单位 | 1.Hebei Univ, Key Lab Med Chem & Mol Diag, Coll Chem & Environm Sci,Minist Educ, Analyt Chem Key Lab Hebei Prov,Chem Biol Key Lab, Baoding 071002, Peoples R China 2.Natl Ctr Nanosci & Technol, CAS Key Lab Biol Effects Nanomat & Nanosafety, Beijing 100190, Peoples R China |
推荐引用方式 GB/T 7714 | Duan, Fei,Feng, Xiaochen,Jin, Yan,et al. Metal-carbenicillin framework-based nanoantibiotics with enhanced penetration and highly efficient inhibition of mrsa[J]. Biomaterials,2017,144:155-165. |
APA | Duan, Fei.,Feng, Xiaochen.,Jin, Yan.,Liu, Dawei.,Yang, Xinjian.,...&Zhang, Jinchao.(2017).Metal-carbenicillin framework-based nanoantibiotics with enhanced penetration and highly efficient inhibition of mrsa.Biomaterials,144,155-165. |
MLA | Duan, Fei,et al."Metal-carbenicillin framework-based nanoantibiotics with enhanced penetration and highly efficient inhibition of mrsa".Biomaterials 144(2017):155-165. |
入库方式: iSwitch采集
来源:高能物理研究所
浏览0
下载0
收藏0
其他版本
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。