Functionally graded membranes from nanoporous covalent organic frameworks for highly selective water permeation
文献类型:期刊论文
作者 | Yang, Hao1,2; Wu, Hong1,2; Yao, Zhaoquan3; Shi, Benbing1,2; Xu, Ziang1,2; Cheng, Xuanxuan1,2; Pan, Fusheng1,2; Liu, Guanhua1,2; Jiang, Zhongyi1,2; Cao, Xingzhong4 |
刊名 | Journal of materials chemistry a
![]() |
出版日期 | 2018-01-14 |
卷号 | 6期号:2页码:583-591 |
ISSN号 | 2050-7488 |
DOI | 10.1039/c7ta09596a |
通讯作者 | Pan, fusheng(fspan@tju.edu.cn) ; Jiang, zhongyi(zhyjiang@tju.edu.cn) |
英文摘要 | Natural materials are often arranged in intricate gradient architectures to implement specific functionalities. implanting such an exquisite prototype into synthetic membranes remains a grand challenge in real-world applications. in this study, functionally graded membranes are fabricated through a surface segregation method using 2d nanoporous cof tphz and poly(ether sulfone) as composite building blocks. during the membrane formation, the cof nanosheets can spontaneously migrate from the membrane bulk to the membrane surface to form a gradient distribution, which can be varied by manipulating the cof addition content and phase inversion temperature. the highest cof content on the membrane surface can be up to 50.90 vol%. due to the formation of a graded structure, the membranes are endowed with remarkably increased hydrophilicity and free volume characteristics. accordingly, the optimized membrane exhibits a permeation flux of 2.48 kg m(-2) hr(-1) and a high separation factor of 1430, and remains robust during a stability test for 320 h, and is one of the most efficient mixed matrix membranes for water/ethanol separation. the separation factor is two orders of magnitude more than that of existing commercial membranes. the concept of functionally graded membranes can be applicable to the development of a broad range of high-performance materials. |
WOS关键词 | MIXED-MATRIX MEMBRANES ; PERVAPORATION DEHYDRATION ; COMPOSITE MEMBRANES ; HYBRID MEMBRANE ; SEPARATION ; PERFORMANCE ; ULTRATHIN ; LAYER ; NANOMATERIALS ; CONSTRUCTION |
WOS研究方向 | Chemistry ; Energy & Fuels ; Materials Science |
WOS类目 | Chemistry, Physical ; Energy & Fuels ; Materials Science, Multidisciplinary |
语种 | 英语 |
WOS记录号 | WOS:000419188300030 |
出版者 | ROYAL SOC CHEMISTRY |
URI标识 | http://www.irgrid.ac.cn/handle/1471x/2178251 |
专题 | 高能物理研究所 |
通讯作者 | Pan, Fusheng; Jiang, Zhongyi |
作者单位 | 1.Tianjin Univ, Sch Chem Engn & Technol, Minist Educ, Key Lab Green Chem Technol, Tianjin 300072, Peoples R China 2.Collaborat Innovat Ctr Chem Sci & Engn Tianjin, Tianjin 300072, Peoples R China 3.Nankai Univ, TKL Met & Mol Based Mat Chem, Natl Inst Adv Mat, Sch Mat Sci & Engn, Tianjin 300350, Peoples R China 4.Chinese Acad Sci, Inst High Energy Phys, Key Lab Nucl Anal Tech, Beijing 100049, Peoples R China |
推荐引用方式 GB/T 7714 | Yang, Hao,Wu, Hong,Yao, Zhaoquan,et al. Functionally graded membranes from nanoporous covalent organic frameworks for highly selective water permeation[J]. Journal of materials chemistry a,2018,6(2):583-591. |
APA | Yang, Hao.,Wu, Hong.,Yao, Zhaoquan.,Shi, Benbing.,Xu, Ziang.,...&Cao, Xingzhong.(2018).Functionally graded membranes from nanoporous covalent organic frameworks for highly selective water permeation.Journal of materials chemistry a,6(2),583-591. |
MLA | Yang, Hao,et al."Functionally graded membranes from nanoporous covalent organic frameworks for highly selective water permeation".Journal of materials chemistry a 6.2(2018):583-591. |
入库方式: iSwitch采集
来源:高能物理研究所
浏览0
下载0
收藏0
其他版本
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。