中国科学院机构知识库网格
Chinese Academy of Sciences Institutional Repositories Grid
Comparisons of Formation Characteristics of NOx Precursors during Pyrolysis of Lignocellulosic Industrial Biomass Wastes

文献类型:期刊论文

作者Zhan, Hao1,2; Yin, Xiuli1; Huang, Yanqin1; Yuan, Hongyou1; Xie, Jianjun1; Wu, Chuangzhi1; Shen, Zhenxing3; Cao, Junji4
刊名ENERGY & FUELS
出版日期2017-09-01
卷号31期号:9页码:9557-9567
DOI10.1021/acs.energyfuels.7b01559
文献子类Article
英文摘要Lignocellulosic industrial biomass wastes (IBWs) are dominant biomass resources in China while their thermal reutilization may bring serious environmental issues due to high nitrogen content. Investigation of the formation of NO precursors during their pyrolysis is significant. Based on the pyrolysis of three typical IBWs, medium-density fiberboard waste (MFW), Chinese herb residue (CHR), and tea stalk waste (TSW), in a horizontal tubular quartz reactor, similarities and differences between the formation characteristics of NH3 and HCN were investigated with the help of chemical absorption spectrophotometry, X-ray photoelectron spectroscopy, and thermogravimetric analysis technologies. The results indicated that amide-N was the overwhelming nitrogen functionality in lignocellulosic IBWs, determining the dominance of NH3 among NOx precursors. However, the ratio and total yield of HCN-N and NH3-N could be changed by affecting intrinsic formation pathways owing to pyrolysis conditions as well as physicochemical properties. Joint effects of thermal conditions on each NOx precursor yield were sequenced as rapid pyrolysis at high temperatures > slow pyrolysis at high temperatures > rapid pyrolysis at low temperatures approximate to slow pyrolysis at low temperatures. Meanwhile, the heating rate during slow pyrolysis had an ignorable impact. As a result, during rapid pyrolysis at high temperatures, larger particle size (0-900 mu m) could significantly decrease the total yield by 16-17 wt % as well as favor NH3-N yield, while both pyrolysis atmosphere and moisture content presented limited effects. Furthermore, different thermal stability of amide-N type together with distinctive fuel components in three lignocellulosic IBWs led to their differences on the ratio of TSW > CHR > MFW at all temperature ranges and the total yield of MEW > CHR > TSW at low temperatures. However, total yield at high temperatures was observed to be 20-45 wt %, which had no relationship with fuel types. These observations will provide some helpful guidance regarding clean thermal reutilization of lignocellulosic IBWs.
WOS关键词SEWAGE-SLUDGE ; NITROGEN TRANSFORMATION ; MICROWAVE PYROLYSIS ; N2O PRECURSORS ; COAL ; GASIFICATION ; NH3 ; HCN ; EVOLUTION ; PEAT
语种英语
WOS记录号WOS:000411771200075
资助机构National Natural Science Foundation of China(51676195 ; Science & Technology Program of Guangdong Province(2016A010104011) ; 51661145022)
源URL[http://ir.giec.ac.cn/handle/344007/15773]  
专题中国科学院广州能源研究所
作者单位1.Chinese Acad Sci, Guangdong Prov Key Lab New & Renewable Energy Res, Guangzhou Inst Energy Convers, Key Lab Renewable Energy, Guangzhou 510640, Guangdong, Peoples R China
2.Univ Chinese Acad Sci, Beijing 100049, Peoples R China
3.Xi An Jiao Tong Univ, Dept Environm Sci & Engn, Xian 710049, Shaanxi, Peoples R China
4.Chinese Acad Sci, Key Lab Aerosol Chem & Phys, Inst Earth Environm, Xian 710045, Shaanxi, Peoples R China
推荐引用方式
GB/T 7714
Zhan, Hao,Yin, Xiuli,Huang, Yanqin,et al. Comparisons of Formation Characteristics of NOx Precursors during Pyrolysis of Lignocellulosic Industrial Biomass Wastes[J]. ENERGY & FUELS,2017,31(9):9557-9567.
APA Zhan, Hao.,Yin, Xiuli.,Huang, Yanqin.,Yuan, Hongyou.,Xie, Jianjun.,...&Cao, Junji.(2017).Comparisons of Formation Characteristics of NOx Precursors during Pyrolysis of Lignocellulosic Industrial Biomass Wastes.ENERGY & FUELS,31(9),9557-9567.
MLA Zhan, Hao,et al."Comparisons of Formation Characteristics of NOx Precursors during Pyrolysis of Lignocellulosic Industrial Biomass Wastes".ENERGY & FUELS 31.9(2017):9557-9567.

入库方式: OAI收割

来源:广州能源研究所

浏览0
下载0
收藏0
其他版本

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。