GETNET: A General End-to-End 2-D CNN Framework for Hyperspectral Image Change Detection
文献类型:期刊论文
作者 | Wang, Qi1,2![]() ![]() |
刊名 | IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING
![]() |
出版日期 | 2019-01 |
卷号 | 57期号:1页码:3-13 |
关键词 | 2-D convolutional neural network (CNN) change detection (CD) deep learning hyperspectral image (HSI) mixed-affinity matrix spectral unmixing |
ISSN号 | 0196-2892;1558-0644 |
DOI | 10.1109/TGRS.2018.2849692 |
产权排序 | 6 |
英文摘要 | Change detection (CD) is an important application of remote sensing, which provides timely change information about large-scale Earth surface. With the emergence of hyperspectral imagery, CD technology has been greatly promoted, as hyperspectral data with high spectral resolution are capable of detecting finer changes than using the traditional multispectral imagery. Nevertheless, the high dimension of the hyperspectral data makes it difficult to implement traditional CD algorithms. Besides, endmember abundance information at subpixel level is often not fully utilized. In order to better handle high-dimension problem and explore abundance information, this paper presents a general end-to-end 2-D convolutional neural network (CNN) framework for hyperspectral image CD (HSI-CD). The main contributions of this paper are threefold: 1) mixed-affinity matrix that integrates subpixel representation is introduced to mine more cross-channel gradient features and fuse multisource information; 2) 2-D CNN is designed to learn the discriminative features effectively from the multisource data at a higher level and enhance the generalization ability of the proposed CD algorithm; and 3) the new HSI-CD data set is designed for objective comparison of different methods. Experimental results on real hyperspectral data sets demonstrate that the proposed method outperforms most of the state of the arts. |
语种 | 英语 |
WOS记录号 | WOS:000455089000001 |
出版者 | IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC |
源URL | [http://ir.opt.ac.cn/handle/181661/31164] ![]() |
专题 | 西安光学精密机械研究所_光学影像学习与分析中心 |
通讯作者 | Wang, Qi |
作者单位 | 1.Northwestern Polytech Univ, Sch Comp Sci, Ctr OPT IMagery Anal & Learning, Xian 710072, Shaanxi, Peoples R China 2.Northwestern Polytech Univ, Unmanned Syst Res Inst, Xian 710072, Shaanxi, Peoples R China 3.Northwestern Polytech Univ, Sch Comp Sci, Xian 710072, Shaanxi, Peoples R China 4.Northwestern Polytech Univ, Ctr OPT IMagery Anal & Learning, Xian 710072, Shaanxi, Peoples R China 5.Mississippi State Univ, Dept Elect & Comp Engn, Starkville, MS 39762 USA 6.Chinese Acad Sci, Xian Inst Opt & Precis Mech, Xian 710119, Shaanxi, Peoples R China 7.Univ Chinese Acad Sci, Beijing 100049, Peoples R China |
推荐引用方式 GB/T 7714 | Wang, Qi,Yuan, Zhenghang,Du, Qian,et al. GETNET: A General End-to-End 2-D CNN Framework for Hyperspectral Image Change Detection[J]. IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING,2019,57(1):3-13. |
APA | Wang, Qi,Yuan, Zhenghang,Du, Qian,&Li, Xuelong.(2019).GETNET: A General End-to-End 2-D CNN Framework for Hyperspectral Image Change Detection.IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING,57(1),3-13. |
MLA | Wang, Qi,et al."GETNET: A General End-to-End 2-D CNN Framework for Hyperspectral Image Change Detection".IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING 57.1(2019):3-13. |
入库方式: OAI收割
来源:西安光学精密机械研究所
其他版本
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。