中国科学院机构知识库网格
Chinese Academy of Sciences Institutional Repositories Grid
TLR: Transfer Latent Representation for Unsupervised Domain Adaptation

文献类型:会议论文

作者Xiao, Pan1; Du, Bo1; Wu, Jia2; Zhang, Lefei1; Hu, Ruimin1; Li, Xuelong3
出版日期2018-10-08
会议日期2018-07-23
会议地点San Diego, CA, United states
卷号2018-July
DOI10.1109/ICME.2018.8486513
英文摘要

Domain adaptation refers to the process of learning prediction models in a target domain by making use of data from a source domain. Many classic methods solve the domain adaptation problem by establishing a common latent space, which may cause the loss of many important properties across both domains. In this manuscript, we develop a novel method, transfer latent representation (TLR), to learn a better latent space. Specifically, we design an objective function based on a simple linear autoencoder to derive the latent representations of both domains. The encoder in the autoencoder aims to project the data of both domains into a robust latent space. Besides, the decoder imposes an additional constraint to reconstruct the original data, which can preserve the common properties of both domains and reduce the noise that causes domain shift. Experiments on cross-domain tasks demonstrate the advantages of TLR over competing methods. © 2018 IEEE.

产权排序3
会议录2018 IEEE International Conference on Multimedia and Expo, ICME 2018
会议录出版者IEEE Computer Society
语种英语
ISSN号19457871;1945788X
ISBN号9781538617373
源URL[http://ir.opt.ac.cn/handle/181661/31262]  
专题西安光学精密机械研究所_光学影像学习与分析中心
通讯作者Du, Bo
作者单位1.School of Computer, Wuhan University, Wuhan, Hubei; 430072, China;
2.Department of Computing, Macquarie University, Sydney; NSW; 2109, Australia;
3.Chinese Academy of Sciences, Xi'An Institute of Optics and Precision Mechanics, Xi'an, Shaanxi; 710119, China
推荐引用方式
GB/T 7714
Xiao, Pan,Du, Bo,Wu, Jia,et al. TLR: Transfer Latent Representation for Unsupervised Domain Adaptation[C]. 见:. San Diego, CA, United states. 2018-07-23.

入库方式: OAI收割

来源:西安光学精密机械研究所

浏览0
下载0
收藏0
其他版本

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。