Lossless compression of hyperspectral imagery using a fast adaptive-length-prediction RLS filter
文献类型:期刊论文
作者 | Song, Jinwei; Zhou, Li; Deng, Chao; An, Junshe |
刊名 | REMOTE SENSING LETTERS
![]() |
出版日期 | 2019 |
卷号 | 10期号:4页码:401-410 |
ISSN号 | 2150-704X |
DOI | 10.1080/2150704X.2018.1562257 |
英文摘要 | Recursive Least Square (RLS) filter has been applied to real-time lossless compression of hyperspectral imagery and been proved a high performance onboard algorithm. Recent research has revealed that the RLS filter with Adaptive-Length-Prediction (ALP) can significantly improve the compression performance. However, the prediction procedure with numerous bands slows down the run-time and is nearly impossible to be applied onboard. In this letter, we proposed a fast RLS algorithm which can accelerate the ALP stage by exploiting the feature of the projection matrix of the RLS algorithm. The experiment results illustrated that with the same compression ratio, the proposed algorithm is 100 times faster than the traditional RLS algorithm with ALP. |
源URL | [http://ir.nssc.ac.cn/handle/122/6674] ![]() |
专题 | 国家空间科学中心_空间技术部 |
推荐引用方式 GB/T 7714 | Song, Jinwei,Zhou, Li,Deng, Chao,et al. Lossless compression of hyperspectral imagery using a fast adaptive-length-prediction RLS filter[J]. REMOTE SENSING LETTERS,2019,10(4):401-410. |
APA | Song, Jinwei,Zhou, Li,Deng, Chao,&An, Junshe.(2019).Lossless compression of hyperspectral imagery using a fast adaptive-length-prediction RLS filter.REMOTE SENSING LETTERS,10(4),401-410. |
MLA | Song, Jinwei,et al."Lossless compression of hyperspectral imagery using a fast adaptive-length-prediction RLS filter".REMOTE SENSING LETTERS 10.4(2019):401-410. |
入库方式: OAI收割
来源:国家空间科学中心
其他版本
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。