中国科学院机构知识库网格
Chinese Academy of Sciences Institutional Repositories Grid
SMEConvNet: A Convolutional Neural Network for Spotting Spontaneous Facial Micro-Expression From Long Videos

文献类型:期刊论文

作者Zhang, Zhihao1,2; Chen, Tong1,2,3; Meng, Hongying1,4; Liu, Guangyuan1,2; Fu, Xiaolan3,5; Fu,Xiaolan
刊名IEEE ACCESS
出版日期2018
卷号6页码:71143-71151
关键词Spotting micro-expression apex frame convolutional neural network deep learning
ISSN号2169-3536
DOI10.1109/ACCESS.2018.2879485
通讯作者Chen, Tong(c_tong@swu.edu.cn)
英文摘要Micro-expression is a subtle and involuntary facial expression that may reveal the hidden emotion of human beings. Spotting micro-expression means to locate the moment when the micro-expression happens, which is a primary step for micro-expression recognition. Previous work in micro-expression spotting focus on spotting micro-expression from short video, and with hand-crafted features. In this paper, we present a methodology for spotting micro-expression from long videos. Specifically, a new convolutional neural network named spotting micro-expression convolutional network was designed for extracting features from video clips, which is the first time that deep learning is used in micro-expression spotting. Then, a feature matrix processing method was proposed for spotting the apex frame from long video, which uses a sliding window and takes the characteristics of micro-expression into account to search the apex frame. Experimental results demonstrate that the proposed method can achieve a better performance than the existing state-of-art methods.
WOS关键词RECOGNITION
资助项目National Natural Science Foundation of China[61301297] ; National Natural Science Foundation of China[61502398] ; National Natural Science Foundation of China (NSFC) ; German Research Foundation (DFG)[NSFC 6162113608/DFG TRR-169]
WOS研究方向Computer Science ; Engineering ; Telecommunications
语种英语
WOS记录号WOS:000453304600001
出版者IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC
资助机构National Natural Science Foundation of China ; National Natural Science Foundation of China (NSFC) ; German Research Foundation (DFG)
源URL[http://ir.psych.ac.cn/handle/311026/27769]  
专题心理研究所_认知与发展心理学研究室
通讯作者Chen, Tong
作者单位1.Southwest Univ, Chongqing Key Lab Nonlinear Circuit & Intelligent, Chongqing 400715, Peoples R China
2.Chongqing Key Lab Artificial Intelligence & Serv, Chongqing 400715, Peoples R China
3.Chinese Acad Sci, Inst Psychol, Beijing 100101, Peoples R China
4.Brunel Univ London, Dept Elect & Comp Engn, London UB8 3PH, England
5.Univ Chinese Acad Sci, Dept Psychol, Beijing 100049, Peoples R China
推荐引用方式
GB/T 7714
Zhang, Zhihao,Chen, Tong,Meng, Hongying,et al. SMEConvNet: A Convolutional Neural Network for Spotting Spontaneous Facial Micro-Expression From Long Videos[J]. IEEE ACCESS,2018,6:71143-71151.
APA Zhang, Zhihao,Chen, Tong,Meng, Hongying,Liu, Guangyuan,Fu, Xiaolan,&Fu,Xiaolan.(2018).SMEConvNet: A Convolutional Neural Network for Spotting Spontaneous Facial Micro-Expression From Long Videos.IEEE ACCESS,6,71143-71151.
MLA Zhang, Zhihao,et al."SMEConvNet: A Convolutional Neural Network for Spotting Spontaneous Facial Micro-Expression From Long Videos".IEEE ACCESS 6(2018):71143-71151.

入库方式: OAI收割

来源:心理研究所

浏览0
下载0
收藏0
其他版本

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。