中国科学院机构知识库网格
Chinese Academy of Sciences Institutional Repositories Grid
Discriminative Spatiotemporal Local Binary Pattern with Revisited Integral Projection for Spontaneous Facial Micro-Expression Recognition

文献类型:期刊论文

作者Huang, Xiaohua1,2; Wang, Su-Jing3,4; Liu, Xin5; Zhao, Guoying6; Feng, Xiaoyi7; Pietikainen, Matti5
刊名IEEE TRANSACTIONS ON AFFECTIVE COMPUTING
出版日期2019
卷号10期号:1页码:32-47
关键词Spontaneous facial micro-expression spatiotemporal local binary pattern integral projection feature selection
ISSN号1949-3045
DOI10.1109/TAFFC.2017.2713359
产权排序3
文献子类Article
英文摘要

Recently, there have been increasing interests in inferring mirco-expression from facial image sequences. Due to subtle facial movement of micro-expressions, feature extraction has become an important and critical issue for spontaneous facial micro-expression recognition. Recent works used spatiotemporal local binary pattern (STLBP) for micro-expression recognition and considered dynamic texture information to represent face images. However, they miss the shape attribute of face images. On the other hand, they extract the spatiotemporal features from the global face regions while ignore the discriminative information between two micro-expression classes. The above-mentioned problems seriously limit the application of STLBP to micro-expression recognition. In this paper, we propose a discriminative spatiotemporal local binary pattern based on an integral projection to resolve the problems of STLBP for micro-expression recognition. First, we revisit an integral projection for preserving the shape attribute of micro-expressions by using robust principal component analysis. Furthermore, a revisited integral projection is incorporated with local binary pattern across spatial and temporal domains. Specifically, we extract the novel spatiotemporal features incorporating shape attributes into spatiotemporal texture features. For increasing the discrimination of micro-expressions, we propose a new feature selection based on Laplacian method to extract the discriminative information for facial micro-expression recognition. Intensive experiments are conducted on three availably published micro-expression databases including CASME, CASME2 and SMIC databases. We compare our method with the state-of-the-art algorithms. Experimental results demonstrate that our proposed method achieves promising performance for micro-expression recognition.

WOS关键词OPTICAL-FLOW ; TEXTURE
WOS研究方向Computer Science
语种英语
WOS记录号WOS:000461333200006
出版者IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC
源URL[http://ir.psych.ac.cn/handle/311026/28805]  
专题心理研究所_中国科学院行为科学重点实验室
通讯作者Zhao, Guoying
作者单位1.Nanjing Inst Technol, Sch Comp Engn, Nanjing 21167, Jiangsu, Peoples R China
2.Univ Oulu, FI-90014 Oulu, Finland
3.Inst Psychol, CAS Key Lab Behav Sci, Beijing 100101, Peoples R China
4.Univ Chinese Acad Sci, Dept Psychol, Beijing 100101, Peoples R China
5.Univ Oulu, Ctr Machine Vis & Signal Anal, FI-90014 Oulu, Finland
6.Northwest Univ, Sch Informat & Technol, Xian 710065, Shaanxi, Peoples R China
7.Northwestern Polytech Univ, Sch Elect & Informat, Xian 710065, Shaanxi, Peoples R China
推荐引用方式
GB/T 7714
Huang, Xiaohua,Wang, Su-Jing,Liu, Xin,et al. Discriminative Spatiotemporal Local Binary Pattern with Revisited Integral Projection for Spontaneous Facial Micro-Expression Recognition[J]. IEEE TRANSACTIONS ON AFFECTIVE COMPUTING,2019,10(1):32-47.
APA Huang, Xiaohua,Wang, Su-Jing,Liu, Xin,Zhao, Guoying,Feng, Xiaoyi,&Pietikainen, Matti.(2019).Discriminative Spatiotemporal Local Binary Pattern with Revisited Integral Projection for Spontaneous Facial Micro-Expression Recognition.IEEE TRANSACTIONS ON AFFECTIVE COMPUTING,10(1),32-47.
MLA Huang, Xiaohua,et al."Discriminative Spatiotemporal Local Binary Pattern with Revisited Integral Projection for Spontaneous Facial Micro-Expression Recognition".IEEE TRANSACTIONS ON AFFECTIVE COMPUTING 10.1(2019):32-47.

入库方式: OAI收割

来源:心理研究所

浏览0
下载0
收藏0
其他版本

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。