Rough extreme learning machine: A new classification method based on uncertainty measure
文献类型:期刊论文
作者 | Feng, Lin1; Xu, Shuliang2; Wang, Feilong1; Liu, Shenglan1; Qiao, Hong3,4![]() |
刊名 | NEUROCOMPUTING
![]() |
出版日期 | 2019-01-24 |
卷号 | 325页码:269-282 |
关键词 | Extreme learning machine Rough set Attribute reduction Classification Neural network |
ISSN号 | 0925-2312 |
DOI | 10.1016/j.neucom.2018.09.062 |
通讯作者 | Feng, Lin(fenglin@dlut.edu.cn) |
英文摘要 | Extreme learning machine (ELM) is a new single hidden layer feedback neural network. The weights of the input layer and the biases of neurons in hidden layer are randomly generated; the weights of the output layer can be analytically determined. ELM has been achieved good results for a large number of classification tasks. In this paper, a new extreme learning machine called rough extreme learning machine (RELM) was proposed. RELM uses rough set to divide data into upper approximation set and lower approximation set, and the two approximation sets are utilized to train upper approximation neurons and lower approximation neurons. In addition, an attribute reduction is executed in this algorithm to remove redundant attributes. The experimental results showed, comparing with the comparison algorithms, RELM can get a better accuracy and a simpler neural network structure on most data sets; RELM cannot only maintain the advantages of fast speed, but also effectively cope with the classification task for high-dimensional data. (C) 2018 Elsevier B.V. All rights reserved. |
WOS关键词 | ARTIFICIAL NEURAL-NETWORK ; HIDDEN NODES ; SET-THEORY ; OPTIMIZATION ; REGRESSION ; SELECTION ; REDUCTS ; MODELS |
资助项目 | National Natural Science Foundation of China[61672130] ; National Natural Science Foundation of China[61602082] ; National Natural Science Foundation of China[61627808] ; National Natural Science Foundation of China[91648205] ; Foundation of LiaoNing Educational Committee[201602151] ; MOE Research Center for Online Education of China[2016YB121] ; Open Program of State Key Laboratory of Software Architecture[SKLSAOP1701] ; Development of Science and Technology of Guangdong Province Special Fund Project[2016B090910001] |
WOS研究方向 | Computer Science |
语种 | 英语 |
WOS记录号 | WOS:000449695000024 |
出版者 | ELSEVIER SCIENCE BV |
资助机构 | National Natural Science Foundation of China ; Foundation of LiaoNing Educational Committee ; MOE Research Center for Online Education of China ; Open Program of State Key Laboratory of Software Architecture ; Development of Science and Technology of Guangdong Province Special Fund Project |
源URL | [http://ir.ia.ac.cn/handle/173211/22611] ![]() |
专题 | 自动化研究所_复杂系统管理与控制国家重点实验室_机器人应用与理论组 |
通讯作者 | Feng, Lin |
作者单位 | 1.Dalian Univ Technol, Sch Innovat & Entrepreneurship, Dalian, Peoples R China 2.Dalian Univ Technol, Fac Elect Informat & Elect Engn, Dalian, Peoples R China 3.Chinese Acad Sci, Inst Automat, Beijing, Peoples R China 4.State Key Lab Management & Control Complex Syst, Beijing, Peoples R China |
推荐引用方式 GB/T 7714 | Feng, Lin,Xu, Shuliang,Wang, Feilong,et al. Rough extreme learning machine: A new classification method based on uncertainty measure[J]. NEUROCOMPUTING,2019,325:269-282. |
APA | Feng, Lin,Xu, Shuliang,Wang, Feilong,Liu, Shenglan,&Qiao, Hong.(2019).Rough extreme learning machine: A new classification method based on uncertainty measure.NEUROCOMPUTING,325,269-282. |
MLA | Feng, Lin,et al."Rough extreme learning machine: A new classification method based on uncertainty measure".NEUROCOMPUTING 325(2019):269-282. |
入库方式: OAI收割
来源:自动化研究所
浏览0
下载0
收藏0
其他版本
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。