Deep-MATEM: TEM query image based cross-modal retrieval for material science literature
文献类型:期刊论文
作者 | Li, Hailiang1,2; Guan, Qingxiao2,3; Wang, Haidong1; Dong, Jing2,4![]() |
刊名 | MULTIMEDIA TOOLS AND APPLICATIONS
![]() |
出版日期 | 2018-12-01 |
卷号 | 77期号:23页码:30269-30290 |
关键词 | Cross-Modal Document retrieval Convolutional network Material science |
ISSN号 | 1380-7501 |
DOI | 10.1007/s11042-018-6043-0 |
通讯作者 | Guan, Qingxiao(258817567@qq.com) |
英文摘要 | With the rapid increasing of published material science literatures, an effective literature retrieving system is important for researchers to obtain relevant information. In this paper we propose a cross-modal material science literatures retrieval method using transmission electron microscopy(TEM) image as query information, which provide a access of using material experiment generated TEM image data to retrieve literatures. In this method, terminologies are extracted and topic distribution are inferred from text part of literatures by using LDA, and we design a multi-task Convolutional Neuron Network(CNN) mapping query TEM image to the relevant terminologies and topic distribution predictions. The ranking score is calculated from output for query image and text data. Experimental results shows our method achieves better performance than multi-label CCA, Deep Semantic Matching(Deep SM) and Modality-Specific Deep Structure(MSDS). |
WOS关键词 | SCALE ; CLASSIFICATION ; FEATURES |
资助项目 | National Natural Science Foundation of China[U1536105] ; National Natural Science Foundation of China[51474237] ; National Natural Science Foundation of China[U1536120] ; National Natural Science Foundation of China[U1636201] ; National Key Research and Development Program of China[2016YFB1001003] |
WOS研究方向 | Computer Science ; Engineering |
语种 | 英语 |
WOS记录号 | WOS:000448401600006 |
出版者 | SPRINGER |
资助机构 | National Natural Science Foundation of China ; National Key Research and Development Program of China |
源URL | [http://ir.ia.ac.cn/handle/173211/22827] ![]() |
专题 | 自动化研究所_智能感知与计算研究中心 |
通讯作者 | Guan, Qingxiao |
作者单位 | 1.Cent S Univ, Sch Minerals Proc & Bioengn, Changsha 410083, Hunan, Peoples R China 2.Chinese Acad Sci, Inst Informat Engn, State Key Lab Informat Secur, Beijing 100093, Peoples R China 3.Univ Chinese Acad Sci, Sch Cyber Secur, Beijing 100093, Peoples R China 4.Chinese Acad Sci, Inst Automat, Ctr Res Intelligent Percept & Comp, Beijing 100190, Peoples R China |
推荐引用方式 GB/T 7714 | Li, Hailiang,Guan, Qingxiao,Wang, Haidong,et al. Deep-MATEM: TEM query image based cross-modal retrieval for material science literature[J]. MULTIMEDIA TOOLS AND APPLICATIONS,2018,77(23):30269-30290. |
APA | Li, Hailiang,Guan, Qingxiao,Wang, Haidong,&Dong, Jing.(2018).Deep-MATEM: TEM query image based cross-modal retrieval for material science literature.MULTIMEDIA TOOLS AND APPLICATIONS,77(23),30269-30290. |
MLA | Li, Hailiang,et al."Deep-MATEM: TEM query image based cross-modal retrieval for material science literature".MULTIMEDIA TOOLS AND APPLICATIONS 77.23(2018):30269-30290. |
入库方式: OAI收割
来源:自动化研究所
浏览0
下载0
收藏0
其他版本
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。