中国科学院机构知识库网格
Chinese Academy of Sciences Institutional Repositories Grid
DeepScan: Exploiting Deep Learning Malicious Account Detection in Location-Based Social Networks

文献类型:期刊论文

作者Gong, Qingyuan1,2; Chen, Yang1,2; He, Xinlei1,2; Zhuang, Zhou1,2; Wang, Tianyi3; Huang, Hong4,5; Wang, Xin1,2; Fu, Xiaoming5
刊名IEEE COMMUNICATIONS MAGAZINE
出版日期2018-11-01
卷号56期号:11页码:21-27
ISSN号0163-6804
DOI10.1109/MCOM.2018.1700575
通讯作者Gong, Qingyuan(qgong12@fudan.edu.cn)
英文摘要Our daily lives have been immersed in wide-spread location-based social networks (LBSNs). As an open platform LBSNs typically allow all kinds of users to register accounts. Malicious attackers can easily join and post misleading information often with the intention of influencing users' decisions in urban computing environments. To provide reliable information and improve the experience for legitimate users we design and implement DeepScan a malicious account detection system for LBSNs. Different from existing approaches DeepScan leverages emerging deep learning technologies to learn users' dynamic behavior. In particular we introduce the long short-term memory (LSTM) neural network to conduct time series analysis of user activities. DeepScan combines newly introduced time series features and a set of conventional features extracted from user activities and exploits a supervised machine-learning-based model for detection. Using real traces collected from Dianping a representative LBSN we demonstrate that DeepScan can achieve excellent prediction performance with an F1-score of 0.964. We also find that the time series features play a critical role in the detection system.
资助项目National Natural Science Foundation of China[61602122] ; National Natural Science Foundation of China[71731004] ; National Natural Science Foundation of China[U1636220] ; National Natural Science Foundation of China[61472423] ; Natural Science Foundation of Shanghai[16ZR1402200] ; Shanghai Pujiang Program[16PJ1400700] ; EU FP7 IRSES MobileCloud project[612212] ; Lindemann Foundation[12-2016]
WOS研究方向Engineering ; Telecommunications
语种英语
WOS记录号WOS:000450603000004
出版者IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC
资助机构National Natural Science Foundation of China ; Natural Science Foundation of Shanghai ; Shanghai Pujiang Program ; EU FP7 IRSES MobileCloud project ; Lindemann Foundation
源URL[http://ir.ia.ac.cn/handle/173211/22833]  
专题自动化研究所_智能感知与计算研究中心
通讯作者Gong, Qingyuan
作者单位1.Fudan Univ, Sch Comp Sci, Shanghai Key Lab Intelligent Informat Proc, Shanghai, Peoples R China
2.Xidian Univ, State Key Lab Integrated Serv Networks, Xian, Shaanxi, Peoples R China
3.Chinese Acad Sci, Inst Automat, Beijing Bytedance Technol & Res Ctr Precis Sening, Beijing, Peoples R China
4.Huazhong Univ Sci & Technol, Sch Comp Sci & Technol, Wuhan, Hubei, Peoples R China
5.Univ Gottingen, Inst Comp Sci, Gottingen, Germany
推荐引用方式
GB/T 7714
Gong, Qingyuan,Chen, Yang,He, Xinlei,et al. DeepScan: Exploiting Deep Learning Malicious Account Detection in Location-Based Social Networks[J]. IEEE COMMUNICATIONS MAGAZINE,2018,56(11):21-27.
APA Gong, Qingyuan.,Chen, Yang.,He, Xinlei.,Zhuang, Zhou.,Wang, Tianyi.,...&Fu, Xiaoming.(2018).DeepScan: Exploiting Deep Learning Malicious Account Detection in Location-Based Social Networks.IEEE COMMUNICATIONS MAGAZINE,56(11),21-27.
MLA Gong, Qingyuan,et al."DeepScan: Exploiting Deep Learning Malicious Account Detection in Location-Based Social Networks".IEEE COMMUNICATIONS MAGAZINE 56.11(2018):21-27.

入库方式: OAI收割

来源:自动化研究所

浏览0
下载0
收藏0
其他版本

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。