中国科学院机构知识库网格
Chinese Academy of Sciences Institutional Repositories Grid
Brain slices microscopic detection using simplified SSD with Cycle-GAN data augmentation

文献类型:会议论文

作者Weizhou Liu1,2; Long Cheng1,2; Deyuan Meng3
出版日期2018
会议日期13-16 Dec. 2018
会议地点Siem Reap
国家Cambodia
英文摘要

Orderly automatic collection of brain slices on the silicon substrate is critical for understanding the working principle of the whole-brain neural network. Accurate and real-time brain slices detection with microscopic CCD is crucial for automatic collection of brain slices. To solve this task, an efficient simplified SSD detection model with Cycle-GAN data augmentation is presented in this paper. The proposed simplified SSD streamlines the detection network of the original SSD architecture, leading to a more rapid detection. Moreover, the proposed Cycle-GAN data augmentation method overcomes the limitation of training images. To verify the effectiveness of the proposed method, experiments are conducted with a self-made brain slices dataset. The experiment results suggest that, the proposed method has a good performance of rapidly detecting brain slices with only a small training dataset.

源URL[http://ir.ia.ac.cn/handle/173211/23116]  
专题自动化研究所_复杂系统管理与控制国家重点实验室_先进机器人控制团队
自动化研究所_复杂系统管理与控制国家重点实验室
作者单位1.State Key Laboratory of Management and Control for Complex Systems, Institute of Automation, Chinese Academy of Sciences, Beijing 100190, China
2.School of Artificial Intelligence, University of Chinese Academy of Sciences, Beijing 100049, China
3.School of Automation Science and Electrical Engineering, Beihang University, Beijing 100083, China
推荐引用方式
GB/T 7714
Weizhou Liu,Long Cheng,Deyuan Meng. Brain slices microscopic detection using simplified SSD with Cycle-GAN data augmentation[C]. 见:. Siem Reap. 13-16 Dec. 2018.

入库方式: OAI收割

来源:自动化研究所

浏览0
下载0
收藏0
其他版本

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。