Radiomics analysis allows for precise prediction of epilepsy in patients with low-grade gliomas
文献类型:期刊论文
作者 | Liu zhenyu![]() ![]() ![]() ![]() ![]() ![]() |
刊名 | Neuroimage:Clinical
![]() |
出版日期 | 2018-04-24 |
期号 | 19页码:271-278 |
关键词 | Low Grade Gliomas, Radiomics, Epilepsy, Elastic Net, T2wi |
英文摘要 | Purpose: To investigate the association between imaging features and low-grade gliomas (LGG) related epilepsy, and to propose a radiomics-based model for the prediction of LGG-associated epilepsy. Methods: This retrospective study consecutively enrolled 286 patients with LGGs (194 in the primary cohort and 92 in the validation cohort). T2-weighted MR images (T2WI) were used to characterize risk factors for LGG-related epilepsy: Tumor location features and 3-D imaging features were determined, following which the interactions between these two kinds of features were analyzed. Elastic net was applied to generate a radiomics signature combining key imaging features associated with the LGG-related epilepsy with the primary cohort, and then a nomogram incorporating radiomics signature and clinical characteristics was developed. The radiomics signature and nomogram were validated in the validation cohort. Results: A total of 475 features associated with LGG-related epilepsy were obtained for each patient. A radiomics signature with eleven selected features allowed for discriminating patients with epilepsy or not was detected, which performed better than location and 3-D imaging features. The nomogram incorporating radiomics signature and clinical characteristics achieved a high degree of discrimination with area under receiver operating characteristic (ROC) curve (AUC) at 0.8769 in the primary cohort and 0.8152 in the validation cohort. The nomogram also allowed for good calibration in the primary cohort. Conclusion: We developed and validated an effective prediction model for LGG-related epilepsy. Our results suggested that radiomics analysis may enable more precise and individualized prediction of LGG-related epilepsy. |
语种 | 英语 |
源URL | [http://ir.ia.ac.cn/handle/173211/23184] ![]() |
专题 | 自动化研究所_中国科学院分子影像重点实验室 |
通讯作者 | Jiang Tao; Tian Jie |
推荐引用方式 GB/T 7714 | Liu zhenyu,Wang Yinyan,Liu Xing,et al. Radiomics analysis allows for precise prediction of epilepsy in patients with low-grade gliomas[J]. Neuroimage:Clinical,2018(19):271-278. |
APA | Liu zhenyu.,Wang Yinyan.,Liu Xing.,Du Yang.,Tang zhenchao.,...&Tian Jie.(2018).Radiomics analysis allows for precise prediction of epilepsy in patients with low-grade gliomas.Neuroimage:Clinical(19),271-278. |
MLA | Liu zhenyu,et al."Radiomics analysis allows for precise prediction of epilepsy in patients with low-grade gliomas".Neuroimage:Clinical .19(2018):271-278. |
入库方式: OAI收割
来源:自动化研究所
其他版本
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。