中国科学院机构知识库网格
Chinese Academy of Sciences Institutional Repositories Grid
Learning battles in ViZDoom via deep reinforcement learning

文献类型:会议论文

作者Kun Shao1,2; Dongbin Zhao1,2; Nannan Li1,2; Yuanheng Zhu1,2
出版日期2018-10
会议日期2018-08
会议地点Maastricht, The Netherlands
关键词Reinforcement Learning, Deep Learning, Game Ai
英文摘要

First-person shooter (FPS) video games play an important role in game artificial intelligence (AI). In this paper, we present an effective deep reinforcement learning (DRL) method to learn battles in ViZDoom. Our approach utilizes the actorcritic with Kronecker-factored trust region (ACKTR), a sampleefficient and computationally inexpensive DRL method. We train our ACKTR agents in two battle scenarios, and compare with the advantage actor-critic (A2C) baseline agent. The experimental
results demonstrate that DRL methods successfully teach agents to battle in these scenarios. In addition, the ACKTR agents significantly outperform the A2C agents in terms of all the metrics by a significant margin.

语种英语
源URL[http://ir.ia.ac.cn/handle/173211/23364]  
专题复杂系统管理与控制国家重点实验室_深度强化学习
通讯作者Dongbin Zhao
作者单位1.The State Key Laboratory of Management and Control for Complex Systems, Institute of Automation, Chinese Academy of Sciences
2.University of Chinese Academy of Sciences
推荐引用方式
GB/T 7714
Kun Shao,Dongbin Zhao,Nannan Li,et al. Learning battles in ViZDoom via deep reinforcement learning[C]. 见:. Maastricht, The Netherlands. 2018-08.

入库方式: OAI收割

来源:自动化研究所

浏览0
下载0
收藏0
其他版本

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。