中国科学院机构知识库网格
Chinese Academy of Sciences Institutional Repositories Grid
Visual navigation with Actor-Critic deep reinforcement learning

文献类型:会议论文

作者Kun Shao1,2; Dongbin Zhao1,2; Yuanheng Zhu1,2; Qichao Zhang1,2
出版日期2018-03
会议日期2018-01
会议地点Rio, Brazil
英文摘要

Visual navigation in complex environments is crucial for intelligent agents. In this paper, we propose an efficient deep reinforcement learning (DRL) method to tackle visual navigation tasks. We present the synchronous advantage actor-critic (A2C) with generalized advantage estimator (GAE) algorithm. The A2C enables agents to learn from multiple processes, which significantly reduces the training time. The GAE used to estimate the advantage function improves the policy gradient estimates. We focus on visual navigation tasks in ViZDoom, and train agents in two health gathering scenarios. The experimental results show this method successfully teaches our agents to navigate in these scenarios. The A2C with GAE agent reaches the highest score
in the first task, and a competitive score in the second task. In
addition, this agent has better average scores and lower variances
in both tasks.

源URL[http://ir.ia.ac.cn/handle/173211/23365]  
专题复杂系统管理与控制国家重点实验室_深度强化学习
通讯作者Yuanheng Zhu
作者单位1.The State Key Laboratory of Management and Control for Complex Systems, Institute of Automation, Chinese Academy of Sciences
2.University of Chinese Academy of Sciences
推荐引用方式
GB/T 7714
Kun Shao,Dongbin Zhao,Yuanheng Zhu,et al. Visual navigation with Actor-Critic deep reinforcement learning[C]. 见:. Rio, Brazil. 2018-01.

入库方式: OAI收割

来源:自动化研究所

浏览0
下载0
收藏0
其他版本

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。