中国科学院机构知识库网格
Chinese Academy of Sciences Institutional Repositories Grid
Joint Feature Network for Bridge Segmentation in Remote Sensing Images

文献类型:会议论文

作者Jian Cai; Lei Ma; Feimo Li; Yiping Yang
出版日期2018
会议日期2018-07-22
会议地点Valencia, Spain
关键词Convolutional Neural Networks Pixelwise Classification Remote Sensing Images Semantic Segmentation
页码2515-2518
英文摘要

This paper proposes a novel convolutional neural network architecture for semantic segmentation of bridges with various scales in optical remote sensing images. In the context of R-SI analysis on objects with irregular shapes, it is necessary to get dense, pixelwise classification maps. To address the issue, a new network architecture for producing refined shapes is required instead of image categorization labels. In our end-to-end framework, a ResNet is used as a backbone model to extract semantic features, then a cascaded top-down path is added to fuse these features as different scales. Joint features are obtained by stacking different layers of feature maps. Experiments show our proposed architecture has the ability to combine rich multi-scale contextual information to produce semantic segmentation maps with high accuracy.

语种英语
源URL[http://ir.ia.ac.cn/handle/173211/23592]  
专题自动化研究所_空天信息研究中心
通讯作者Lei Ma
作者单位中国科学院自动化研究所
推荐引用方式
GB/T 7714
Jian Cai,Lei Ma,Feimo Li,et al. Joint Feature Network for Bridge Segmentation in Remote Sensing Images[C]. 见:. Valencia, Spain. 2018-07-22.

入库方式: OAI收割

来源:自动化研究所

浏览0
下载0
收藏0
其他版本

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。