中国科学院机构知识库网格
Chinese Academy of Sciences Institutional Repositories Grid
Recurrent Metric Networks and Batch Multiple Hypothesis for Multi-Object Tracking

文献类型:期刊论文

作者LONGTAO CHEN; XIAOJIANG PENG; MINGWU REN
刊名IEEE ACCESS
出版日期2018
文献子类期刊论文
英文摘要Multi-object tracking aims to recover object trajectories given multiple detections in video frames. Object feature extraction and similarity metric are two keys to reliably associate trajectories. In this paper, we propose the recurrent metric network (RMNet), a CNN-RNN based similarity metric framework for multi-object tracking. Given a reference object, the RMNet takes as input random positive andnegativedetectionsandoutputssimilarityscoresovertime.TheRMNethandlesthelong-termtemporal object variations and false object detections by its long-short memory units. With the scores from RMNet, we introduce a batch multiple hypothesis (BMH) strategy, a simple yet efficient data association method for batch multi-object tracking. BMH generates a hypothesis tree for each object with a dual-threshold hypothesisgenerationapproach,andthenselectsthebestbranch(orhypothesis)foreachobjectasthebatch tracking result. Specially, we model hypothesis selection as a 0-1 programming problem and introduce a rewardfunctiontore-findobjectsincaseofmissingdetection.WeevaluateourRMNetandBMHstrategyon severalpopulardatasets:2DMOT2015,PETS2009,TUD,andKITTI.Weachieveperformancecomparable or superior to these of the state-of-the-art methods.
URL标识查看原文
语种英语
源URL[http://ir.siat.ac.cn:8080/handle/172644/13472]  
专题深圳先进技术研究院_集成所
推荐引用方式
GB/T 7714
LONGTAO CHEN,XIAOJIANG PENG,MINGWU REN. Recurrent Metric Networks and Batch Multiple Hypothesis for Multi-Object Tracking[J]. IEEE ACCESS,2018.
APA LONGTAO CHEN,XIAOJIANG PENG,&MINGWU REN.(2018).Recurrent Metric Networks and Batch Multiple Hypothesis for Multi-Object Tracking.IEEE ACCESS.
MLA LONGTAO CHEN,et al."Recurrent Metric Networks and Batch Multiple Hypothesis for Multi-Object Tracking".IEEE ACCESS (2018).

入库方式: OAI收割

来源:深圳先进技术研究院

浏览0
下载0
收藏0
其他版本

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。