中国科学院机构知识库网格
Chinese Academy of Sciences Institutional Repositories Grid
Human Action Recognition by Learning Spatio-Temporal Features With Deep Neural Networks.

文献类型:期刊论文

作者Wang, Lei; Xu, Yangyang; Cheng, Jun; Xia, Haiying; Yin, Jianqin; Wu, Jiaji
刊名IEEE ACCESS
出版日期2018
文献子类期刊论文
英文摘要Human action recognition is one of the fundamental challenges in robotics systems. In this paper, we propose one lightweight action recognitionarchitecture based on deep neural networks just using RGB data. The proposed architecture consists of convolution neural network (CNN), long short-term memory (LSTM) units, and temporal-wise attention model. First, the CNN is used to extract spatial features to distinguish objects from the background withboth local and semantic characteristics. Second, two kinds of LSTM networks are performed on the spatial feature maps of different CNN layers (pooling layer and fully-connected layer) to extract temporal motion features. Then, one temporal-wise attention model is designed after the LSTM to learn which parts in which frames are more important. Lastly, a joint optimization module is designed to explore intrinsic relations between two kinds of LSTM features. Experimental results demonstrate the efficiency of the proposed method.
URL标识查看原文
语种英语
源URL[http://ir.siat.ac.cn:8080/handle/172644/13568]  
专题深圳先进技术研究院_集成所
推荐引用方式
GB/T 7714
Wang, Lei,Xu, Yangyang,Cheng, Jun,et al. Human Action Recognition by Learning Spatio-Temporal Features With Deep Neural Networks.[J]. IEEE ACCESS,2018.
APA Wang, Lei,Xu, Yangyang,Cheng, Jun,Xia, Haiying,Yin, Jianqin,&Wu, Jiaji.(2018).Human Action Recognition by Learning Spatio-Temporal Features With Deep Neural Networks..IEEE ACCESS.
MLA Wang, Lei,et al."Human Action Recognition by Learning Spatio-Temporal Features With Deep Neural Networks.".IEEE ACCESS (2018).

入库方式: OAI收割

来源:深圳先进技术研究院

浏览0
下载0
收藏0
其他版本

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。