中国科学院机构知识库网格
Chinese Academy of Sciences Institutional Repositories Grid
Deep Reinforcement Learning Apply in Electromyography Data Classification.pdf

文献类型:会议论文

作者Chengjie Song; Chenjie Chen; Yanjie Li; Xinyu Wu
出版日期2018
会议日期2018
会议地点shenzhen
英文摘要In this paper, we try a novel approach to detect human movement intentions based on electromyography(EMG) signals. We use the Convolutional neural network(CNN) to extract EMG features automatically, then use dueling deep Q-learning, a reinforcement learning technique, to learn a classification policy which with an ability to select most helpful subset features and filter the irrelevant or redundant features from the deep learning features. We show that the deep learning method outperforms the multi-layer perceptron in the several subjects EMG data classification situation and the reinforcement networks can use less features to reach a relatively high classification precision
源URL[http://ir.siat.ac.cn:8080/handle/172644/13836]  
专题深圳先进技术研究院_集成所
推荐引用方式
GB/T 7714
Chengjie Song,Chenjie Chen,Yanjie Li,et al. Deep Reinforcement Learning Apply in Electromyography Data Classification.pdf[C]. 见:. shenzhen. 2018.

入库方式: OAI收割

来源:深圳先进技术研究院

浏览0
下载0
收藏0
其他版本

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。