中国科学院机构知识库网格
Chinese Academy of Sciences Institutional Repositories Grid
Unsupervised Feature Fusion Combined with Neural Network Applied to UAV Attitude Estimation

文献类型:会议论文

作者Dai Xin; Yimin Zhou; Meng Shan; Qingtian Wu
出版日期2018
会议日期2018
会议地点Kuala Lumpur, Malaysia
英文摘要In the field of an unmanned aerial vehicle (UAV), the navigation algorithm with high precision and easy implementation is a hot topic of research, and the key of UAV control is to obtain accurate and real-time attitude information. In this paper, a feature fusion algorithm based on unsupervised deep autoencoder (DAE) is proposed. It is used for data fusion of multiple sensors. The experimental results show that the unsupervised feature fusion algorithm can effectively improve the accuracy and has the potential to be applied to the data fusion of UAV sensors
源URL[http://ir.siat.ac.cn:8080/handle/172644/13852]  
专题深圳先进技术研究院_集成所
推荐引用方式
GB/T 7714
Dai Xin,Yimin Zhou,Meng Shan,et al. Unsupervised Feature Fusion Combined with Neural Network Applied to UAV Attitude Estimation[C]. 见:. Kuala Lumpur, Malaysia. 2018.

入库方式: OAI收割

来源:深圳先进技术研究院

浏览0
下载0
收藏0
其他版本

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。