中国科学院机构知识库网格
Chinese Academy of Sciences Institutional Repositories Grid
A Topic BiLSTM Model for Sentiment Classification

文献类型:会议论文

作者Yanming Huang; Yuncheng Jiang; Touhidul Hasan; Qingshan Jiang; Chao Li
出版日期2018
会议日期2018
会议地点上海
英文摘要The Long Short Term Memory (LSTM) network is very effective for capturing sequence information which can help to analyze sentiments. However, it fails to capture the meaning of polysemous word under different contexts. In this paper, we propose topic information-based bidirectional LSTM (BiLSTM) model for sentiment classification. BiLSTM model learns topic information to obtain the sensitive representation of the polysemous word under given circumstance. The topic information is generated through a topic modeling via Latent Dirichlet Allocation (LDA). The topic information-based BiLSTM network allows the model to capture the meaning of the polysemous word and long sequence information automatically. The experimental results on real-world datasets demonstrate that the proposed method outperforms the task of benchmark sentiment classification on SemEval 2013 and IMDB.
语种英语
源URL[http://ir.siat.ac.cn:8080/handle/172644/14083]  
专题深圳先进技术研究院_数字所
推荐引用方式
GB/T 7714
Yanming Huang,Yuncheng Jiang,Touhidul Hasan,et al. A Topic BiLSTM Model for Sentiment Classification[C]. 见:. 上海. 2018.

入库方式: OAI收割

来源:深圳先进技术研究院

浏览0
下载0
收藏0
其他版本

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。