中国科学院机构知识库网格
Chinese Academy of Sciences Institutional Repositories Grid
SAAN: A Sentiment-Aware Attention Network for Sentiment Analysis

文献类型:会议论文

作者Zeyang Lei; Yujiu Yang; Min Yang
出版日期2018
会议日期2018
会议地点美国芝加哥
英文摘要Analyzing public opinions towards products, services and social events is an important but challenging task. Despite the remarkable successes of deep neural networks in sentiment analysis, these approaches do not make full use of the prior sentiment knowledge (e.g., sentiment lexicon, negation words, intensity words). In this paper, we propose a Sentiment- Aware Attention Network (SAAN) to boost the performance of sentiment analysis, which adopts a three-step strategy to learn the sentiment-specific sentence representation. First, we design a word-level mutual attention mechanism to model word-level correlation. Next, a phrase-level convolutional attention is designed to obtain phrase-level correlation. Finally, a sentence-level multi-source attention mechanism is adopted to capture various sentimental information from multiple dimensions. The experiments on Movie Review (MR) and Stanford Sentiment Treebank (SST) show that our model consistently outperform the previous methods for sentiment analysis.
语种英语
URL标识查看原文
源URL[http://ir.siat.ac.cn:8080/handle/172644/14092]  
专题深圳先进技术研究院_数字所
推荐引用方式
GB/T 7714
Zeyang Lei,Yujiu Yang,Min Yang. SAAN: A Sentiment-Aware Attention Network for Sentiment Analysis[C]. 见:. 美国芝加哥. 2018.

入库方式: OAI收割

来源:深圳先进技术研究院

浏览0
下载0
收藏0
其他版本

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。