中国科学院机构知识库网格
Chinese Academy of Sciences Institutional Repositories Grid
Sentiment Lexicon Enhanced Attention-based LSTM for Sentiment Classification

文献类型:会议论文

作者Zeyang Lei; Yujiu Yang; Min Yang
出版日期2018
会议日期2018
会议地点New Orleans, Louisiana, USA
英文摘要Deep neural networks have gained great success recently for sentiment classification. However, these approaches do not fully exploit the linguistic knowledge. In this paper, we propose a novel sentiment lexicon enhanced attention-based LSTM (SLEA-LSTM) model to improve the performance of sentence-level sentiment classification. Our method successfully integrates sentiment lexicon into deep neural networks via single-head or multi-head attention mechanisms. We conduct extensive experiments on MR and SST datasets. The experimental results show that our model achieved comparable or better performance than the state-of-the-art methods.
语种英语
URL标识查看原文
源URL[http://ir.siat.ac.cn:8080/handle/172644/14094]  
专题深圳先进技术研究院_数字所
推荐引用方式
GB/T 7714
Zeyang Lei,Yujiu Yang,Min Yang. Sentiment Lexicon Enhanced Attention-based LSTM for Sentiment Classification[C]. 见:. New Orleans, Louisiana, USA. 2018.

入库方式: OAI收割

来源:深圳先进技术研究院

浏览0
下载0
收藏0
其他版本

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。