A Semi-Supervised Network Embedding Model for Protein Complexes Detection
文献类型:会议论文
作者 | Wei Zhao; Jia Zhu; Min Yang; G.P.C. Fung; Xiaojun Chen |
出版日期 | 2018 |
会议日期 | 2018 |
会议地点 | New Orleans, Louisiana, USA |
英文摘要 | Protein complex is a group of associated polypeptide chains which plays essential roles in biological process. Given a graph representing protein-protein interactions (PPI) network, it is critical but non-trivial to detect protein complexes. In this paper, we propose a semi-supervised network embedding model by adopting graph convolutional networks to effectively detect densely connected subgraphs. We conduct extensive experiment on two popular PPI networks with various data sizes and densities. The experimental results show our approach achieves state-of-the-art performance. |
语种 | 英语 |
URL标识 | 查看原文 |
源URL | [http://ir.siat.ac.cn:8080/handle/172644/14095] ![]() |
专题 | 深圳先进技术研究院_数字所 |
推荐引用方式 GB/T 7714 | Wei Zhao,Jia Zhu,Min Yang,et al. A Semi-Supervised Network Embedding Model for Protein Complexes Detection[C]. 见:. New Orleans, Louisiana, USA. 2018. |
入库方式: OAI收割
来源:深圳先进技术研究院
浏览0
下载0
收藏0
其他版本
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。